Аэробные процессы энергообеспечения мышечной деятельности протекают. Энергообеспечение организма человека при мышечной работе. Максимальное потребление кислорода

В. Н. Селуянов
ПНИЛ, РГАФК, Москва

Соревновательная деятельность в борьбе продолжается 5-9 мин. и завершается, как правило, предельным утомлением спортсмена. В циклических видах спорта такая деятельность может быть сопоставлена с соревновательной деятельностью бегуна на 1500-3000 м. Поскольку этот вид деятельности хорошо изучен в физиологии, то достаточно легко найти экспериментальные данные и физиологические механизмы, объясняющие результативность такой деятельности.

Например, возьмем данные B. Saltin et al. (Onset of exercise // Simposium. — Toulouse. — 1972. — P. 63-76.) В этой работе представлены данные об изменении АТФ, КрФ, гликогена, лактата в мышце (латеральной головке четырехглавой мышцы бедра), и лактата в крови при выполнении педалирования на велоэргометре с мощностью МПК.

Механизм энергообеспечения такой работы может быть описан следующим образом. В начале, для преодоления внешнего сопротивления, которое составляет около 40 % от МАМ, должны быть рекрутировано около 40 % МВ. Эти мышечные волокна являются окислительными. В них начинается трата молекул АТФ и ресинтез их за счет энергии молекул КрФ. Свободные Кр и неорганический фосфат активизируют деятельность гликолиза и окисления жиров одновременно. Через 10-15 с после начала упражнения запасы АТФ и КрФ в рекрутированных МВ значительно снижаются, поэтому мощность работы этих мышечных волокон падает в 2-3 раза. Это заставляет спортсмена рекрутировать новые МВ в количестве, необходимом для поддержания заданной мощности. Следовательно, следующие 10-15 с работа поддерживается за счет аэробных процессов в ранее рекрутированных МВ и энергии АТФ и КрФ в новых МВ. Затем, описанный механизм рекрутирования МВ, продолжает развиваться. Начинают подключаться к работе гликолитические МВ, которые после исчерпания запасов АТФ и КрФ начинают работать в анаэробном гликолизе с образованием лактата и ионов водорода. По данным B. Saltin et al. (1972) интенсивный рост концентрации лактата в мышце начинается после минуты работы. Продолжительность работы рекрутированных гликолитических МВ не превышает одной минуты, поскольку закисление МВ приводит к потере силы и мощности их функционирования. Поэтому работа с заданной мощностью будет продолжаться до тех пор, пока есть что рекрутировать. В момент исчерпания всех МВ заданная мощность уже не может больше поддерживаться. В этот момент мышцы предельно закисляются, потребление кислорода, ЧСС и легочная вентиляция достигаю также предельных величин. Испытуемый испытывает тяжелое физиологическое состояние и отказывается от продолжения работы. Если работа продолжалась 6 мин., то за это время потребление кислорода мышцами составит: V(О 2) АнП × 6 мин. = 4 л/мин х 6 мин. = 24 л/мин. Если мощность работы составила 400 Вт или 5,3 л О 2 /мин, то кислородный запрос упражнения составит 5,3 × 6 мин. = 32 л О 2 . Дефицит кислорода составил 8 л, из него 2-3 л приходится на АТФ и КрФ, а на анаэробный гликолиз 5-6 л.

Следовательно, основным механизмом энергообеспечения является аэробный (24/32 × 100 % = 75 %, алактатный 2/32 × 100 % = 6,3 %, анаэробный гликолиз 6/32 × 100 % = 18,7 %). Эта оценка в целом согласуется с данными многих авторов.

Заметим также, что с ростом потребления кислорода на уровне АнП, когда он приближется по своей величине к МПК, наблюдается увеличение продолжительности работы на уровне МПК, снижается степень закисления мышц и крови. В целом вклад в запрос кислорода аэробных процессов растет и может достигать 90 %.

Отсюда следует приоритет в развитии аэробного механизма энергообеспечения у спортсменов, выполняющих предельную мышечную работу в пределах 5-9 мин.

Единственным специалистом, результаты которого вошли в противоречие с общеустановленными представлениями является В. В. Шиян (1997). На основании исследования соревновательной деятельности различных видов борьбы он пришел к выводу о приоритете анаэробного механизма энергообеспечения.

На основе анализа биоэнергетических характеристик у спортсменов различных видов спорта им было установлено, что «у борцов существенно меньше показатели бионергетических функций, чем у представителей других видов спорта». Например, борцы имеют аэробную мощность (МПК) 58 мл/мин/кг, тогда как у бегунов на дистанцию 800 м и более длинные более 70 мл/мин/кг. Автор предположил, что отставание в развитии борцов связано с отставанием в теории и методике подготовки высококвалифицированных борцов по сравнению с другими видами спорта.

Эта аргументация поверхностная, а обнаруженное явление легко объяснить, если придерживаться концепции о периферическом лимитирующем факторе МПК. В этом случае потребление кислорода определяется массой митохондрий потребляющих кислород в активных мышцах ног, сердце и дыхательных мышц. При педалировании на велоэргометре основную работу выполняют только мышцы ног, поэтому при делении на массу тела, в которую входят у борцов существенно гипертрофированные и массивные мышцы спины, живота и рук, при равных абсолютных величинах МПК относительные величины МПК у борцов окажутся ниже при сравнении с представителями других видов спорта без существенной гипертрофии мышц пояса верхних конечностей.

Другим аргументом В. В. Шияна стали данные факторного анализа, из которых следовало, что вклад в общую дисперсию аэробных способностей борцов составил только 10 %, а основная дисперсия пришлась на анаэробные возможности — более 90 %. Следовательно, «подготовка борца высокой квалификации (особенно этап подготовки к соревнованиям), должна быть направлена на максимальное развитие преимущественно анаэробноых возможностей спортсменов». Такая аргументация не выдерживает следующей критики. При изучении однородных выборок спортсменов наиболее важные для достижения высоких спортивных результатов показатели у всех спортсменов должны быть примерно равными, следовательно, должны мало варьировать. Показатели, которые существенно варьируют, не имеют принципиального значения для данного вида спорта. Из этого следует, что именно анаэробные показатели не имеют принципиального значения при оценке уровня подготовленности борцов высокой квалификации.

Подтверждение нашей аргументации можно найти при анализе соревновательной деятельности борцов. Например, по данным В. В. Шияна (1997) активность победителей и надежность технических действий выше чем у побежденных на 30-50 %, а закисление у победителей либо меньше, либо статистически достоверно не различались (рН = 7,158, б = 0,077). Из этого следует, что более высокая активность борцов победителей определялась их более высокой аэробной подготовленностью.

Другим важным аргументом в пользу важности аэробной подготовленности борцов являются данные о тестировании и норме специальной выносливости борцов. В. В. Шиян (1997) использовал в своих исследованиях тест — педалирование на велоэргометре, три раза по одной минуте предельной нагрузки. После тестирования на 3-5 мин. бралась кровь из мочки уха, для определения рН. По данным тестирования по формуле определяли гликолитическую эффективность:

АнГЭ = ΣАi/(100 х ΔpH)

Где ΣАi сумма трех работ, выполненных в одноминутных предельных упражнениях, ΔpH — изменение степени закисления крови по данным анализа крови до и после тестирования.

Аналогичная формула использовалась для оценки специальной выносливости (коэффициент специальной выносливости):

КСВ = 100/(Σti х ΔpH),

Σti — сумма трех работ, выполненных в виде серий по 15 бросков чучела, с.

Анализ этих уравнений показывает, что при равном объеме выполненной работы уменьшение степени закисления крови ведет к росту специальной выносливости. Следовательно, показатели АнГЭ и КСВ характеризуют уровень аэробных возможностей спортсмена. К сожалению результаты, получаемые по этим формулам, получили некорректную интерпретацию. В. В. Шиян (1997) предположил, что одноминутная работа связана преимущественно с анаэробным механизмом энергообеспечения — анаэробным гликолизом, поэтому показатель КСВ должен характеризовать анаэробную гликолитическую мощность. При такой интерпретации ведущим фактором роста специальной выносливости становится анаэробный гликолиз.

Вывод

Соревновательная деятельность в борьбе самбо и дзюдо, продолжающаяся около 5 мин., требует энергообеспечения преимущественно за счет аэробного механизма, который необходим как для поддержания высокой интенсивности борьбы, так и для случаев проведения высокоинтенсивных двигательных действий связанных с рекрутированием гликолитических мышечных волокон, с образованием молочной кислоты, здесь аэробные возможности необходимы для устранения лактата и ионов водорода в митохондриях окислительных мышечных волокнах активных скелетных мышц, сердце и дыхательной мускулатуре в моменты снижения интенсивности двигательных действий в схватке.

Литература

В. В. Шиян Совершенствование специальной выносливости. — М.: ФОН, 1997. — 166 с.

B. Saltin et al. Onset of exercise //Simposium. — Toulouse. — 1972. — P. 63-76.

Общая характеристика аэробной системы энергообеспечения

Аэробная система энергообеспечения значительно уступает алактатной и лактатной по мощности энергопродукции, скорости включения в обеспечение мышечной деятельности, однако многократно превосходит по ёмкости и экономичности (табл. 1).

Таблица № 1. Энергообеспечение мышечной работы

Источники Пути Образования Время активации до максимального уровня Срок действия Продолжительность максимального выделения энергии
Алактатные анаэробные АТФ, креатинфосфат 0 До 30 с До 10 с
Лактатные анаэробные Гликолиз с образованием лактата 15 – 20 с От 15 – 20 с до 6 – 6 мин От 30 с до 1 мин 30 с
Аэробные Окисление углеводов и жиров кислородом воздуха 90 – 180 с До нескольких часов 2 – 5 мин и более

Особенностью аэробной системы является то, что образование АТФ в клеточных органелах-митохондриях, находящихся в мышечной ткани происходит при участии кислорода, доставляемого кислородтранспортной системой. Это предопределяет высокую экономичность аэробной системы, а достаточно большие запасы гликогена в мышечной ткани и печени, а также практически неограниченные запасы липидов – её ёмкость.

В наиболее упрощённом виде деятельность аэробной системы энергообеспечения осуществляется следующим образом. На первом этапе в результате сложных процессов происходит преобразование как гликогена, так и свободных жирных кислот (СЖК) в ацетил-кофермент А (ацетил-КоА) – активную форму уксусной кислоты, что обеспечивает протекание всех последующих процессов энергообразования по единой схеме. Однако до момента образования ацетил-КоА окисление гликогена и СЖК происходит самостоятельно.

Все многочисленные химические реакции, происходящие в процессе аэробного ресинтеза АТФ, можно разделить на три типа: 1 – аэробный гликолиз; 2 – цикл Кребса, 3 - система транспорта электронов (рис. 7).

Рис. 7. Этапы реакций ресинтеза АТФ в аэробном процессе

Первым этапом реакций является аэробный гликолиз, в результате которого осуществляется расщепление гликогена с образованием СО2 и Н2О. Протекание аэробного гликолиза происходит по той же схеме, что и протекание рассмотренного выше анаэробного гликолиза. В обоих случаях в результате химических реакций гликоген преобразуется в глюкозу, а глюкоза – в пировиноградную кислоту с ресинтезом АТФ. В этих реакциях кислород не участвует. Присутствие кислорода обнаруживается в дальнейшем, когда при его участии пировиноградная кислота не преобразуется в молочную кислоту в молочную кислоту, а затем в лактат, что имеет место в процессе анаэробного гликолиза, а направляется в аэробную систему, конечными продуктами которой оказывается углекислый газ (СО2), выводимый из организма лёгкими, и вода (рис. 8)


Рис. 8. Схематическое протекание анаэробного и аэробного гликолиза

Расщепление 1 моля гликогена на 2 моля пировиноградной кислоты происходит с выделением энергии, достаточной для ресинтеза 3 молей АТФ: Энергия + 3АДФ + Фн → 3АТФ

Из образовавшейся в результате расщепления гликогена пировиноградной кислоты сразу выводится СО2, превращая её из трёхуглеродного соединения в двухуглеродное, которое сочетаясь с коферментом А, образует ацетил- КоА, который включается во второй этап аэробного образования АТФ – цикл лимонной кислоты или цикл Кребса.

В цикле Кребса протекает серия сложных химических реакций, в результате которых происходит окисление пировиноградной кислоты – выведение ионов водорода (Н+) и электронов (е-), которые в итоге попадают в систему транспорта кислорода и участвуют в реакциях ресинтеза АТФ на третьем этапе, образуя СО2, который диффундируется в кровь и переносится в лёгкие, из которых и выводится из организма. В самом цикле Кребса образуется только 2 моля АТФ (рис. 9).


Рис. 9. Схематическое изображение окисления углеродов в цикле Кребса

Третий этап протекает в цепи транспорта электронов (дыхательной цепи). Реакции, происходящие с участием коферментов, в общем виде сводятся к следующему. Ионы водорода и электроны, выделяемые в результате реакций, протекавших в цикле Кребса и в меньшей мере в процессе гликолиза, транспортируются к кислороду, чтобы в результате образовать воду. Одновременно выделяемая энергия в серии сопряжённых реакций используется для ресинтеза АТФ. Весь процесс, происходящий по цепи передачи электронов кислороду называется окислительным фосфорилированием. В процессах, происходящих в дыхательной цепи, потребляется около 90 % поступающего к клеткам кислорода и образуется наибольшее количество АТФ. В общей сложности окислительная система транспорта электронов обеспечивает образование 34 молекул АТФ из одной молекулы гликогена.

Усвоение и абсорбция углеводов в кровоток происходит в тонком кишечнике. В печени они превращаются в глюкозу, которая в свою очередь может быть превращена в гликоген и депонируется в мышцах и печени, а также используется различными органами и тканями в качестве источника энергии для поддержания деятельности. В организме здорового с достаточным уровнем физической подготовленности мужчины с массой тела 75 кг содержится 500 – 550 г углеводов в виде гликогена мышц (около 80 %), гликогена печени (примерно 16 – 17 %), глюкозы крови (3 – 4 %), что соответствует энергетическим запасам порядка 2000 – 2200 ккал.

Гликоген печени (90 – 100 г) используется для поддержания уровня глюкозы крови, необходимого для обеспечения нормальной жизнедеятельности различных тканей и органов. При продолжительной работе аэробного характера, приводящей к истощению запасов мышечного гликогена, часть гликогена печении может использоваться мышцами.

Следует учитывать, что гликогенные запасы мышц и печени могут существенно увеличиваться под влиянием тренировки и пищевых манипуляций, предусматривающих углеводное истощение и последующее углеводное насыщение. Под влиянием тренировки и специального питания концентрация гликогена в печени может увеличиться в 2 раза. Увеличение количества гликогена повышает его доступность и скорость утилизации при выполнении последующей мышечной работы.

При продолжительных физических нагрузках средней интенсивности образование глюкозы в печени возрастает в 2 – 3 раза по сравнению с образованием её в состоянии покоя. Напряжённая продолжительная работа может привести к 7 – 10-кратному увеличению образования глюкозы в печени по сравнению с данными, полученными в состоянии покоя.

Эффективность процесса энергообеспечения за счёт жировых запасов определяется скоростью протекания липолиза и скоростью кровотока в адипозной ткани, что обеспечивает интенсивную доставку свободных жирных кислот (СЖК) к мышечным клеткам. Если работа выполняется с интенсивностью 50 – 60 % VO2 max, отмечается максимальный кровоток в адипозной ткани, что способствует максимальному поступлению в кровь СЖК. Более интенсивная мышечная работа связана с интенсификацией мышечного кровотока при одновременном уменьшении кровоснабжения адипозной ткани и, следовательно, с ухудшением доставки СЖК в мышечную ткань.

Хотя в процессе мышечной деятельности липолиз разворачивается, однако уже на 30 – 40-й минутах работы средней интенсивности её энергообеспечения в равной мере осуществляется за счёт окисления как углеводов, так и липидов. Дальнейшее продолжение работы, приводящее к постепенному исчерпанию ограниченных углеводных ресурсов, связано с увеличением окисления СЖК; например, энергообеспечение второй половины марафонской дистанции в беге или шоссейных велогонках (более 100 км) преимущественно связано с использованием жиров.

Несмотря на то что использование энергии от окисления липидов имеет реальное значение для обеспечения выносливости только при продолжительной мышечной деятельности, начиная уже с первых минут работы с интенсивностью, превышающей 60 % VO2max, отмечается освобождение из триацилглицеридов СЖК, их поступление и окисление в сокращающихся мышцах. Через 30 – 40 мин после начала работы скорость потребления СЖК возрастает в 3 раза, а после 3 – 4 часов работы – в 5 – 6 раз.

Внутримышечная утилизация триглицеридов существенно возрастает под влиянием тренировки аэробной направленности. Эта адаптационная реакция проявляется как в быстроте развёртывания процесса образования энергии за счёт окисления СЖК, поступивших из трицеридов мышц, так и в возрастании их утилизации из мышечной ткани.

Не менее важным адаптационным эффектом тренированной мышечной ткани является повышение её способности к утилизации жировых запасов. Так, после 12-недельной тренировки аэробной направленности способность к утилизации триглицеридов в работающих мышцах резко возрастала и достигала 40 %.

Роль белков для ресинтеза АТФ не существенна. Однако углеродный каркас многих аминокислот может быть использован в качестве энергетического топлива в процессе окислительного метаболизма, что проявляется при продолжительных нагрузках средней интенсивности, при которых вклад белкового метаболизма в энергопродукцию может достичь 5 – 6 % общей потребности в энергии.

Благодаря значительным запасам глюкозы и жиров в организме и неограниченной возможности потребления кислорода их атмосферного воздуха, аэробные процессы, обладая меньшей мощностью по сравнению с анаэробными, могут обеспечивать выполнение работы в течении длительного времени (т. е. их ёмкость очень велика при очень высокой экономичности). Исследования показывают, что, например в марафонском беге за счёт использования мышечного гликогена работа мышц продолжается в течении 80 мин. Определённое количество энергии может быть мобилизовано за счёт гликогена печени. В сумме это может обеспечить 75 % времени, необходимого для преодоления марафонской дистанции. Остальная энергия образуется в результате окисления жирных кислот. Однако скорость их диффузии из крови в мышцы ограничена, что лимитирует производство энергии за счёт этих кислот. Энергии, продуцируемой вследствие окисления СЖК, достаточно для поддержания интенсивности работы мышц на уровне 40 – 50 % VO2max, ВТО времы как сильнейшие марафонцы способны преодолевать дистанцию с интенсивностью, превышающей 80 – 90 % VO2max, что свидетельствует о высоком уровне адаптации аэробной системы энергообеспечения, позволяющем не только обеспечить оптимальное сочетание использования углеводов, жиров, отдельных аминокислот и метаболитов для производства энергии, но и экономное расходование гликогена.

Таким образом, вся совокупность реакций, обеспечивающих аэробное окисление гликогена, выглядит следующим образом. На первом этапе в результате аэробного гликолиза образуется пировиноградная кислота и ресинтезируется некоторое количество АТФ. На втором, в цикле Кребса, производится СО2, а ионы водорода (Н+) и электроны (е-) вводятся в систему транспорта электронов также с ресинтезом некоторого количества АТФ. И наконец, заключительный этап связан с образованием Н2О из Н+, е- и кислорода с высвобождением энергии, используемой для ресинтеза подавляющего количества АТФ. Жиры и белки, используемые в топлива для ресинтеза АТФ, также проходят через цикл Кребса и систему транспорта электронов (рис. 10).


Рис. 10. Схематическое изображение функционирования аэробной системы энергообеспечения

Лактатная система энергообеспечения.

В лактатной системе энергообеспечения ресинтез АТФ происходит за счёт расщепления глюкозы и гликогена при отсутствии кислорода. Этот процесс принято обозначать как анаэробный гликолиз. Анаэробный гликолиз является значительно более сложным химическим процессом по сравнению с механизмами расщепления фосфогенов в алактатной системе энергообеспечения. Он предусматривает протекание серии сложных последовательных реакций, в результате которых глюкоза и гликоген расщепляются до молочной кислоты, которая в серии сопряжённых реакций используется для ресинтеза АТФ (рис. 2).


Рис. 2. Схематическое изображение процесса анаэробного гликолиза

В результате расщепления 1 моля глюкозы образуется 2 моля АТФ, а при расщеплении 1 моля гликогена – 3 моля АТФ. Одновременно с высвобождением энергии в мышцах и жидкостях организма происходит образование пировиноградной кислоты, которая затем преобразуется в молочную кислоту. Молочная кислота быстро разлагается с образованием её соли – лактата.

Накопление молочной кислоты в результате интенсивной деятельности гликолитического механизма приводит к большому образованию лактата и ионов водорода (Н+) в мышцах. В результате, несмотря на действие буферных систем, постепенно снижается мышечный pH с 7,1 до 6,9 и даже до 6,5 – 6,4. Внутриклеточный pH, начиная с уровня 6,9 – 6,8 замедляет интенсивность гликолитической реакции восстановления запасов АТФ, а при pH 6,5 – 6,4 расщепление гликогена прекращается. Таким образом, именно повышение концентрации молочной кислоты в мышцах ограничивает расщепление гликогена в анаэробном гликолизе.

В отличие от алактатной системы энергообеспечения, мощность которой достигает максимальных показателей уже на первой секунде работы, процесс активизации гликолиза разворачивается значительно медленнее и достигает высоких величин энергопродукции только на 5 – 10 секундах работы. Мощность гликолитического процесса значительно уступает мощности креатинфосфокиназного механизма, однако является в несколко раз более высокой по сравнению с возможностями системы аэробного окисления. В частности, если уровень энергопродукции АТФ за счёт распада КФ составляет 9 – 10 ммоль/кг с.м.т./с (сырая масса ткани), то при подключении гликолиза объём производимой АТФ может увеличиться до 14 ммоль/кг с.м.т./с. За счёт использования обоих источников ресинтеза АТФ в течении 3-минутной интенсивной работы мышечная система человека способна вырабатывать около 370 ммоль/кг с.м.т. При этом на долю гликолиза приходится не менее 80 % общей продукции. Максимальная мощность лактатной анаэробной системы проявляется на 20 – 25-й секундах работы, а на 30 – 60-й секундах гликолитический путь ресинтеза АТФ является основным в энергообеспечении работы.

Ёмкость лактатной анаэробной системы обеспечивает её превалирующее участие в энергопродукции при выполнении работы продолжительность до 30 – 90 с. При более продолжительной работе роль гликолиза постепенно снижается, однако остаётся существенной и при более продолжительной работе – до 5 – 6 мин. Общее количество энергии, которое образуется за счёт гликолиза, наглядно может быть оценено и по показателям лактата крови после выполнения работы, требующей предельной мобилизации лактатной системы энергообеспечения. У нетренированных людей предельная концентрация лактата в крови составляет 11 – 12 ммоль/л. Под влиянием тренировки ёмкость лактатной системы резко возрастает и концентрация лактата в крови может достигать 25 – 30 ммоль/л и выше.

Максимальные величины энергообразования и лактата в крови у женщин на 30 – 40 % ниже по сравнению с мужчинами такой же спортивной специализации. Юные спортсмены по сравнению со взрослыми отличаются невысокими анаэробными возможностями. максимальная концентрация лактата в крови при предельных нагрузках анаэробного характера у них не превышает 10 ммоль/кг, что в 2 – 3 раза ниже, чем у взрослых спортсменов.

Таким образом, адаптационные реакции лактатной анаэробной системы могут протекать в различных направлениях. Одним из них является увеличение подвижности гликолитического процесса, что проявляется в значительно более быстром достижении его максимальной производительности (с 15 – 20 до 5 – 8 с). Вторая реакция связана с повышением мощности анаэробной гликолитической системы, что позволяет ей продуцировать значительно большее количество энергии в единицу времени. Третья реакция сводится к повышению ёмкости системы и, естественно общего объёма продуцируемой энергии, вследствие чего увеличивается продолжительность работы, преимущественно обеспечиваемая за счёт гликолиза.

Максимальное значение лактата и pH в артериальной крови в процессе соревнований по некоторым видам спорта представлены на рис. 3.


Рис.3. Максимальные значения лактата и pH в артериальной крови у спортсменов, специализирующихся в различных видах спорта: а – бег (400, 800 м); б – скоростной бег на коньках (500, 1000м); в – гребля (2000 м); г – плавание 100 м; д – бобслей; е – велогонки (100 км)
(Eindemann, Keul, 1977)

Они дают достаточно полное представление о роли лактатных анаэробных источников энергии для достижения высоких спортивных результатов разных видах спорта и об адаптационных резервах системы анаэробного гликолиза.

При выборе оптимальной продолжительности работы, обеспечивающей максимальную концентрацию лактата в мышцах, следует учитывать, что максимальное содержание лактата отмечается при использовании предельных нагрузок, продолжительность которых колеблется в пределах 1 – 6 мин. Увеличение продолжительности работы связано с уменьшением концентрации лактата в мышцах.

Для выбора оптимальной методики повышения анаэробных возможностей важно проследить особенности накопления лактата при прерывистой работе максимальной интенсивности. Например, одноминутные предельные нагрузки с четырёхминутными паузами приводят к постоянному увеличению лактата в крови (рис. 4) при одновременном снижениипоказателей кислотно-основного состояния (рис. 5).


Рис. 4. Изменение концентрации лактата в крови в процессе прерывистой максимальной нагрузки (одноминутные упражнения с интенсивностью 95 %, разделённые периодами отдыха длительностью 4 мин) (Hermansen, Stenswold, 1972)

Рис. 5. Изменение pH крови при прерывистом выполнении одноминутных нагрузок максимальной интенсивности (Hollman, Hettinger, 1980)

Аналогичный эффект отмечается и при выполнении 15 – 20-секундных упражнений максимальной мощности с паузами около 3 минут (рис. 6).


Рис. 6. Динамика биохимических изменений у спортсменов при повторном выполнении кратковременных упражнений максимальной мощности (Н. Волков и др., 2000)

Алактатная система энергообеспечения.

Эта система энергообеспечения является наименее сложной, отличается высокой мощностью освобождения энергии и кратковременностью действия. Образование энергии в этой системе происходит за счёт расщепления богатых энергией фосфатных соединений – аденозинтрифосфата (АТФ) и креатинфосфата (КФ). Энергия, образующаяся в результате распада АТФ, в полной мере включается в процесс энергообеспечения работы уже на первой секунде. Однако уже на второй секунде выполнение работы осуществляется за счёт креатинфосфата (КФ), депонированного в мышечных волокнах и содержащего богатые энергией фосфатные соединения. Расщепление этих соединений приводит к интенсивному высвобождению энергии. Конечными продуктами расщепления КФ являются креатин (Кр) и неорганический фосфат (Фн). Реакция стимулируется ферментом креатинкиназа и схематически выглядит следующим образом:


Энергия, высвобождаемая при распаде КФ, является доступной для процесса ресинтеза АТФ, поэтому за быстрым расщеплением АТФ в процессе мышечного сокращения незамедлительно следует его ресинтез из АДФ и Фн с привлечением энергии, высвобождаемой при расщеплении КФ:


Ещё одним механизмом алактатной системы энергообеспечения является так называемая миокиназная реакция, которая активизируется при значительном мышечном утомлении, когда скорость расщепления АТФ существенно превышает скорость её ресинтеза. Миокиназная реакция стимулируется ферментом миокиназа и заключается в переносе фосфатной группы с одной молекулы на другую и образованием АТФ и аденозинмонофосфата (АМФ):


Аденозинмонофосфат (АМФ), являющийся побочным продуктом миокиназной реакции, содержит последнюю фосфатную группу и в отличие от АТФ и АДФ не может быть использован в качестве источника энергии. Миокиназная реакция активизируется в условиях, когда в силу утомления другие пути ресинтеза АТФ исчерпали свои возможности.

Запасы КФ не могут быть восполнены в процессе выполнения работы. Для его ресинтеза может быть использована только энергия, высвобождаемая в результате распада АТФ, что оказывается возможным лишь в восстановительном периоде после окончания работы.

Алактатная система, отличаясь очень высокой скорость освобождения энергии, одновременно характеризуется крайне ограниченной ёмкостью. Уровень максимальной алактатной анаэробной мощности зависит от количества фосфатов (АТФ и КФ) в мышцах и скорости их использования. Под влиянием тренировки спринтерского характера показатели алактатной анаэробной мощности могут быть значительно повышены. Под влиянием специальной тренировки мощность алактатной анаэробной системы может быть увеличена на 40 -80 %. Например, спринтерская тренировка в течении 8 недель бегунов привела к увеличению содержания АТФ и КФ в скелетной мышце в состоянии покоя примерно на 10 %.

Под влиянием тренировки в мышцах не только увеличивается количество АТФ и Кф, но и существенно возрастает способность мышечной ткани к их расщеплению. Ещё одной адаптационной реакцией, определяющей мощность алактатной анаэробной системы, является ускорение ресинтеза фосфатов за счёт повышения активности ферментов, в частности креатинфосфокиназы и миокиназы.

Под влиянием тренировки существенно возрастают и показатели максимальной ёмкости алактатной анаэробной стстемы энергообеспечения. Ёмкость алактатной анаэробной системы под влиянием целенаправленной многолетней тренировки иожет возрастать в 2,5 раза. Это подтверждается показателями максимального алактатного О2-долга: у начинающих спортсменов он составляет 21,5 мл/кг, у спортсменов высокого класса может достигать 54,5 мл/кг.

Увеличение ёмкости алактатной энергетической системы проявляется и в продолжительности работы максимальной интенсивности. Так, у лиц не занимающихся спортом, максимальная мощность алактатного анаэробного процесса, достигнутая через 0,5 – 0,7 с после начала работы, может удерживаться не более 7 – 10 с, то у спортсменов высшего класса, специализирующихся в спринтерских дисциплинах, она может проявляться в течение 15 – 20 с. При этом большая продолжительность работы сопровождается и значительно большей её мощностью, что обусловливается высокой скоростью распада и ресинтеза высокоэнергетических фосфатов.

Концентрация АТФ и КФ у мужчин и женщин практически одинакова – около 4 ммоль/кг АТФ и 16 ммоль/кг КФ. Однако общее количество фосфогенов, которые могут использоваться при мышечной деятельности, у мужчин значительно больше, чем у женщин, что обусловлено большими различиями в общем объёме скелетной мускулатуры. Естественно, что у мужчин значительно больше ёмкость алактатной анаэробной системы энергообеспечения.

В заключении следует отметить, что лица с высоким уровнем алактатной анаэробной производительности, как правило, имеют низкие аэробные возможности, выносливость к длительной работе. Одновременно у бегунов на длинные дистанции алактатные анаэробные возможности не только не сравнимы с возможностями спринтеров, но и часто уступают показателям, регистрируемым у лиц, не занимающихся спортом.

Общая характеристика систем энергообеспечения мышечной деятельности

Энергия, как известно, представляет собой общую количественную меру, связывающую воедино все явления природы, разные формы движения материи. Из всех видов энергии, образующейся и использующейся в различных физических процессах(тепловая, механическая, химическая и др.)применительно к мышечной деятельности, основное внимание должно быть сконцентрировано на химической энергии организма, источником которой являются пищевые продукты и её преобразовании в механическую энергию двигательной деятельности человека.

Энергия, высвобождаемая во время расщепления пищевых продуктов, используется для производства аденозинтрифосфата (АТФ), который депонируется в мышечных клетках и является своеобразным топливом для производства механической энергии мышечного сокращения.

Энергию для мышечного сокращения даёт расщепление аденозинтрифосфата (АТФ) до аденозиндифосфата (АДФ) и неорганического фосфата (Ф). Количество АТФ в мышцах невелико и его достаточно для обеспечения высокоинтенсивной работы лишь в течении 1 – 2 с. Для продолжения работы необходим ресинтез АТФ, который производится за счёт энергоотдающих реакций трёх типов. Восполнение запасов АТФ в мышцах позволяет поддерживать постоянный уровень его концентрации, необходимый для полноценного мышечного сокращения.

Ресинтез АТФ обеспечивается как в анаэробных, так и в аэробных реакциях с привлечением в качестве энергетических источников запасов креатинфосфата (КФ) и АДФ, содержащихся в мышечных тканях, а также богатых энергией субстратов (гликоген мышц и печени, запасы липозной ткани и др.). Химические реакции, приводящие к обеспечению мышц энергией протекают в трёх энергетических системах: 1) анаэробной алактатной, 2) анаэробной лактатной (гликолитической), 3) аэробной.

Образование энергии в первых двух системах осуществляется в процессе химических реакций, не требующих наличия кислорода. Третья система предусматривает энергообеспечение мышечной деятельности в результате реакций окисления, протекающих с участием кислорода. Наиболее общие представления о последовательности включения и количественных соотношениях в энергообеспечении мышечной деятельности каждой из указанных систем приведены на рис. 1.

Возможности каждой из указанных энергетических систем определяются мощностью, т. е. скоростью освобождения энергии в метаболических процессах, и ёмкостью, которая определяется величиной и эффективностью использования субстратных фондов.


Рис. 1. Последовательность и количественные соотношения процессов энергообеспечения мышечной деятельности у квалифицированных спортсменов в различных энергетических системах (схема): 1 – алактатной; 2 – лактатной; 3 – аэробной

Механизмы энергообеспечения организма человека при мышечной работе.

Любая мышечная деятельность сопряжена с использованием энергии, Непосредственным источником которой является АТФ (аденозинтрифосфорная кислота). АТФ называют универсальным источником энергии. Все осталь­ные энергопроцессы направлены на воспроизводство и поддержание её уровня. АТФ во время мышечной работы восстанавливается с такой же скороростью, как и расщепляется. Восстановление АТФ может осуществляться двумя спос-ми: анаэробным (в ходе реакции без кислорода) и аэробным (с различ­ным уровнем потребления кислорода) с участием специального энергетического вещества креатинфосфата. Готового для синтеза АТФ креатинфосфата хватает только на 10-15 секунд мощной работы. В таких условиях синтез АТФ идёт при остром дефиците кислорода (например, вот почему невозможно || с нринтерском темпе пробежать 800 м). Мышечная работа очень высокой ин-м интенсивности осуществляется в анаэробном режиме, когда синтез АТФ совершается при остром дефиците кислорода. В этом случае организм добывает для г.к ми 1,1 АТФ, используя процесс гликолиза - превращения углеводородов, в результате которого вновь происходит ресинтез АТФ, и образуются конечные Кислые продукты - молочная (лактат) и пировиноградная кислоты.



Гликолиз обеспечивает работоспособность организма в течение 2-4 ми-н т.е. креатинфофатный механизм и гликолиз дают энергии совсем немного.

При высокой функциональной напряжённости в мышцах уменьшается содержание энергонасыщенных углеводов (гликогена и фосфорных - креатин-фосфата), в крови снижается уровень глюкозы, в печени - гликогена.

Аэробный механизм (когда запросы организма в кислороде полностью удовлетворяются) окисления питательных веществ с образованием креатин­фосфата и синтеза АТФ является наиболее эффективным и может обеспечивать работоспособность человека в течение нескольких часов. В этих условиях организм добывает энергии АТФ во много раз больше, чем при гликолизе.

Следует отметить, что в клетках все превращения углеводов, жиров, органических кислот и, в последнюю очередь, белков на пути к синтезу АТФ проходят в митохондриях. В обычных условиях работает часть митохондрий, по мере увеличения потребности мышц в энергии в процессе синтеза макроэнергетических соединений включается всё больше «подстанций».

Способность человека к синтезу АТФ, мощность и ёмкость каждого уровня индивидуальны, но диапазон всех уровней может быть расширен за счёт тренировки. Если запросы возрастают, в клетках увеличивается количество митохондрий, а при ещё большей потребности - убыстряется темп их обновления.

Любое двигательное действие осуществляется с помощью мышечного сокращения. Но для того, чтобы осуществить двигательное действие, помимо фазы сокращения, необходимо наличие фазы расслабления. Для последовательной смены фаз необходима энергия, именно о ней мы и поговорим в этой статье.

Для начала поверхностно разберем процесс произвольного мышечного сокращения. Этот процесс начинается с формирования двигательного импульса (потенциала действия) в коре головного мозга. Затем этот импульс двигаясь по нейронам достигает «границы» мышечной ткани, преодолевая нервно-мышечный синапс (место перехода двигательного импульса от нервной ткани к мышечной), вызывает серию реакций, заканчивающихся сокращением мышечной ткани. Ключевое место в этом процессе занимает молекула АТФ (аденозинтрифосфорная кислота).
При гидролизе (химическая реакция распада вещества при взаимодействии с водой) АТФ, энергия химической связи преобразуется в механическую энергию, позволяя актин-миозиновому комплексу (ключевой элемент мышечной системы, непосредственно способствующий мышечному сокращению) совершить механическую работу (перемещение).
Для мышечного расслабления, так же необходима энергия гидролиза АТФ, для разрыва связи актин-миозинового комплекса.

Теперь непосредственно поговорим о молекуле АТФ. Для продолжительного осуществления мышечной деятельности необходимо
огромное количество молекул АТФ, мы уже знаем, что эти молекулы занимают центральное место в мышечной деятельности. И тут мы сталкиваемся с главной проблемой энергетического обеспечения – очень малым запасом АТФ в мышечной ткани, около 5 ммоль/кг, этого количества «топлива» хватит на обеспечение работы продолжительностью до 2 секунд.

Для более продолжительной работы, нам необходимо постоянно восполнять запасы АТФ, процесс восполнения запасов АТФ называется ресинтезом АТФ и протекает с потреблением энергии.

Существует три пути ресинтеза АТФ: а) аэробный; б) креатинфосфатный (анаэробный-алактатный); в) гликолитический (анаэробный-лактатный).

Все пути ресинтеза АТФ (энергообеспечения), можно описать количественными критериями: а) максимальная мощность – наибольшее
количество АТФ, которое может образоваться в единицу времени данным путем ресинтеза, измеряется в кал/мин*кг мышечной ткани или Дж/мин*кг мышечной ткани; б) время развертывания – минимальное время, необходимое для выхода данного пути ресинтеза АТФ на свою максимальную мощность, измеряется в единицах времени (секундах, минутах); в) время удержания максимальной мощности – продолжительность функционирования пути ресинтеза АТФ на максимальной мощности, измеряется в единицах времени (секунды, минуты, часы); г) метаболическая емкость – суммарное количество АТФ, произведенное конкретным путем ресинтеза.

Краткая характеристика каждого из путей энергообеспечения (подробные механизмы протекания каждого из путей ресинтеза АТФ в данной статье описываться не будут, т.к. для этого придется использовать много специализированных понятий, что затруднит восприятие материала):


  • 1. Аэробный путь ресинтеза АТФ (тканевое дыхание) – базовый путь ресинтеза АТФ, протекающий в митохондриях мышечных клеток. Для протекания данного пути ресинтеза необходимо наличие кислорода, поэтому он называется аэробным.
    В ходе тканевого
    дыхания от окисляемого вещества отнимается два атома водорода (2 протона и 2 электрона) и по дыхательной цепи передаются на молекулярный кислород (О2), доставляемый в мышцы по кровеносной системе, в результате чего возникает вода.
    Благодаря энергии, выделяющейся при образовании воды, происходит синтез АТФ из АДФ (аденозиндифосфат, возникает в результате гидролиза АТФ) и фосфорной кислоты (Н3РО4).
    На образовавшуюся молекулу воды приходится три молекулы АТФ (схема 1).


    Скорость протекания данного пути ресинтеза АТФ, зависит от содержания в мышечной клетке АДФ, являющийся активатором тканевого дыхания. В покое, когда в мышечных клетках почти нет АДФ, тканевое дыхание функционирует очень медленно.

    Данный путь ресинтеза АТФ характеризуется следующими количественными критериями:


    • а) максимальная мощность – 350-450 кал/мин*кг.
      Сравнивая этот показатель с показателями другимх путей ресинтеза АТФ, тканевое дыхание обладает самой низкой мощностью;
    • б) время развертывания – 3-4 минуты (у тренированных спортсменов может достигать 1 минуты). Это связано с необходимостью доставки
      кислорода в мышцу, для этого необходимо максимальное развертывание дыхательной системы, сердечно-сосудистой системы и системы крови;
    • в) время работы на максимальной мощности – десятки минут. Такое продолжительное время поддержания максимальной мощности объясняется тем, что предшественниками окисляемого вещества могут выступать и углеводы и жиры и даже
      аминокислоты;
    • г) метаболическая емкость – образуется огромное количество молекул АТФ, это возможно благодаря очень глубокому окислению веществ и длительному времени функционирования данного пути ресинтеза АТФ.
  • 2. Креатинфосфатный (анаэробный-алактатный) путь ресинтеза АТФ – путь ресинтеза АТФ, обеспечивающий мышцы энергией до выхода аэробного пути на максимальную мощность и при выполнении работы высокой мощности. Содержание креатинфосфата в
    мышечных клетках в состоянии покоя – 15-20 ммоль/кг.
    Креатинфосфат относится к группе так называемых макроэргических соединений, обладая огромной энергией химических связей. Еще
    одной важной характеристикой креатинфосфата является его высокое сродство к АДФ, как мы уже знаем, количество АДФ при физической работе возрастает. В результате химической реакции, остаток фосфорной кислоты с креатинфосфата переходит к АДФ,
    образуя АТФ и креатин (схема 2).


    Данный путь ресинтеза АТФ характеризуется следующими критериями:


    • а) максимальная мощность – 900-1100 кал/мин*кг. Это в три раза выше чем при аэробном ресинтезе. Такая высокая мощность обусловлена высокой активностью ферментов, обеспечивающих протекание данной химической реакции;
    • б) времяразвертывания – 1-2 секунды. Запаса АТФ в мышцах как раз хватает на это время. Такое быстрое развертывание объясняется механизмами регуляции данного пути ресинтеза АТФ, при достижении двигательным импульсом мышечной клетки, происходит высвобождение ионов Ca++ из своих депо, их концентрация в клетке увеличивается в 1000 раз, именно ионы Ca++ регулируют скорость протекания креатинкиназной реакции;
    • в) время работы с максимальной мощностью – до 10 секунд, это связано с небольшим исходным запасом креатинфосфата в мышцах и высокой скоростью его расходования;
    • г) метаболическая емкость – меньше чем у аэробного пути ресинтеза АТФ, это определяется малым временем функционирования с максимальной мощностью.


      Теперь затронем вопрос соотношения между тремя путями ресинтеза АТФ. Исходной переменной, от которой будет зависеть вовлеченность каждого из процессов энергообеспечения, выступает мощность выполняемой работы. Чем выше мощность работы, тем больше количества АТФ необходимо произвести в единицу времени. Самое большое количество АТФ в единицу времени производится в процессе креатинфосфатной реакции, ее показатель лежит в диапазоне от 900 до 1100 кал/мин*кг. На втором месте по этому показателю находится гликолитический механизм энергообеспечения, его показатель приблизительно равен 800 кал/мин*кг.

      Самым низким показателем максимальной мощности процесса энергообеспечения обладает аэробный механизм, примерно 400 кал/мин*кг. Энергообеспечение не может обеспечиваться исключительно одним из рассматриваемых механизмов в чистом виде, при работе любой мощности, все пути ресинтеза АТФ внося свой вклад в энергообеспечение, но в зависимости от мощности, один из
      механизмов является ведущим.
      Например, выполняя работу максимальной мощности, ведущим механизмом энергообеспечения будет выступать креатинфосфатный путь ресинтеза АТФ, как только будет исчерпан потенциал данного механизма энергообеспечения, нам придется снизить мощность выполняемой работы, либо прекратить ее выполнение.

      В качестве примера, хорошо иллюстрирующего вышесказанное, представьте, что вы хотите пробежать 3000 метров, удерживая максимальную скорость, вы вышли на стартовую линию и по сигналу стартового пистолета начали свой бег. На первых метрах дистанции, вы уверенно набираете скорость, энергетический запрос на выполнение данной работы возрастает.

      Набрав максимальную скорость, примерно к 60 метру, вы чувствуете, что бежать быстрее не получается и стараетесь удерживать максимальную скорость, в этот момент, ваш энергетический запрос стабилизировался, а механизмы энергообеспечения вышли на максимальную мощность.

      И вдруг, вы почувствовали, примерно на 110 метре дистанции, что вы больше не можете удерживать максимальную скорость, вы начинаете замедляться, именно в этот момент, вы попадаете в так называемую зону метаболического перехода, когда механизм энергообеспечения, прежде обеспечивающий поддержание максимальной мощности работы исчерпал свой ресурс, энергообеспечение «передается» следующему механизму, гликолитическому процессу, обладающего меньшей максимальной мощностью энергообеспечения.

      Спустя еще несколько минут, 2-3 минуты, вы заметите, что ваша скорость продолжает снижаться, энергообеспечение переходит в «руки» аэробного процесса. К концу дистанции, ведущим путем ресинтеза АТФ уже будет выступать аэробный механизм.
      В начале дистанции, развив максимальную скорость, энергообеспечение нашей работы, обеспечивалось креатинфосфатным путем ресинтеза АТФ, котрый обладает самым высоким уровнем максимальной мощности, а заканчивали дистанцию, используя аэробное энергообеспечение, обладающее наименьшей мощностью.

      В данном случае, мы не учитываем финишный рывок (спурт), который выполняется за счет креатинфосфатного пути, успеваюшего частично восстановить свой потенциал, пока мы находились в зоне аэробной работы. Схематично, вышесказанное можно представить следующим образом (схема 4).




      сектор 3 – место метаболического перехода между гликолитическим и аэробным энергообеспечением; штриховой линией обозначается суммарная выработка АТФ" alt=" Примечание:
      ось Х – время, с, мин (размерность не соблюдена);
      ось У – мощность энергопроизводства, кал/мин*кг;
      сектор 1 – место выхода креатинфосфатного пути энергообеспечения на максимальную мощность;
      сектор 2 – место метаболического перехода между креатинфосфатным и гликолитическим механизмами энергообеспечения;
      сектор 3 – место метаболического перехода между гликолитическим и аэробным энергообеспечением; штриховой линией обозначается суммарная выработка АТФ" src="https://4sport.ua/_upl/2/1445/4_1444905645.jpg">
      Примечание:
      ось Х – время, с, мин (размерность не соблюдена);
      ось У – мощность энергопроизводства, кал/мин*кг;
      сектор 1 – место выхода креатинфосфатного пути энергообеспечения на максимальную мощность;
      сектор 2 – место метаболического перехода между креатинфосфатным и гликолитическим механизмами энергообеспечения;
      сектор 3 – место метаболического перехода между гликолитическим и аэробным энергообеспечением; штриховой линией обозначается суммарная выработка АТФ

      Теперь, когда мы имеем общее представление об энергообеспечении мышечной деятельности, можно осуществить перенос общих знаний в рамки спортивного скалолазания, используя дидактический принцип «от общего к частному». Рассмотрим энергообеспечение в трех, основных соревновательных дисциплинах спортивного скалолазания, в боулдеринге, трудности и скорости.

      Но для рассмотрения картины энергообеспечения, нам необходимо ввести новое понятие – «мощность удержания зацепа». Это понятие актуально тем, что даже два одинаковых зацепа, расположенных на плоскостях с разными углами наклона, могут отличаться по показателю энергетического запроса для одного спортсмена. В данном случае, описанное выше положение, является исключительно моим субъективным допущение и безусловно требует экспериментального (констатирующего) подтверждения с использованием инструментальных методов. Мощность удержания зацепа занимает центральное место в описании процессов энергообеспечения.

      Дальнейшая разработка данного понятия, может привести к использованию данного понятия, как одного из объективных параметров трассы, на сегодняшний день трассы оцениваются субъективно. Мощность удержания зацепа зависит от многих переменных, например, от массы спортсмена, от способа удержания зацепа, от технической подготовленности спортсмена и других. В дальнейшем данное понятие можно будет использовать, например, для оценки технической подготовленности спортсменов.


      Боулдеринг, дисциплина, с которой мы начнем описание процессов энергообеспечения. Задача в боулдеринге – пройти серию коротких, но очень сложных трасс. Еще одно понятие, которое мы будем активно использовать – спортивное (соревновательное, специализированное) упражнение, есть процесс прохождения конкретного маршрута в боулдеринге, трудности или скорости, с соблюдением соревновательных условий.
      Когда мы проходим предельную для себя боулдеринговую трассу, мышцы – сгибатели пальцев развивают максимальную силу, чтобы удерживать зацепы, соответственно развивается максимальная для нас мощность удержания зацепа. Удерживая такую зацепу даже три секунды, чтобы, например, перенести ногу, в наших мышцах должно ресентезироваться определенное количество АТФ, мы делаем следующий перехват и удерживаем следующую зацепу еще 2 секунды и срываемся, наша система энергообеспечения не смогла предоставить необходимое количество энергии (количество АТФ) для дальнейшего удержания зацепа.

      Как правило процесс преодоления соревновательной трассы в боулдеринге занимает небольшое количество времени, приблизительно 30 секунд, это время зависит от параметров трассы. Неудачные попытки занимают еще меньше времени. Поэтому энергообеспечение в боулдеринге осуществляется креатинфосфатным и частично гликолитическим путями ресинтеза АТФ В трудности дело обстоит иначе, задача в трудности сводится к преодолению длинной соревновательной трассы, 50-60 зацепов (финалы Кубков мира).
      Время, затрачиваемое спортсмена на преодоление такой трассы, приблизительно 5-6 минут.
      Мощность удержания отдельных зацепов ниже по сравнению с боулдерингом, исключения могут составлять ключевые участки трассы. Поэтому энергообеспечение осуществляется преимущественно гликолитическим процессом, мышцы – сгибатели пальцев в момент срыва «забиты» (утомлены), чувствуется жжение, оно связано с накоплением в мышце продукта гликолитического энергообеспечения – молочной кислотой.
      Мышцы «набухают», это результат смещения водородного показателя (рН) внутри мышечной клетки в кислую сторону, вызывающего изменение проницаемости «стенок» клетки для молекул воды и вода из межклеточного пространства стремиться внутрь клетки.
      В скоростном лазании спортсмены развивают высочайшую мощность, пробегая эталонную трассу за 5,6 секунды, спортсмен массой 70 кг развивает мощность в 1839 Вт. Поэтому энергообеспечение в скоростном лазании обеспечивается креатинфосфатным путем ресинтеза АТФ.

      В заключительной части статьи поговорим о том, какими способами можно повысить эффективность энергообеспечения на тренировочных занятиях. Эффективность энергообеспечения можно повысить совокупностью двух показателей, первый показатель – мощность процесса энергообеспечения, повышается за счет увеличения ферментативной активности в том или ином процессе энергообеспечения, второй показатель – емкость механизма энергообеспечения, повышается за счет увеличения концентрации продуктов, принимающих участие в окислительных процессах того или иного пути ресинтеза АТФ.

      Результатом тренировок, направленных на повышение эффективности креатинфосфатного пути ресинтеза АТФ станет: увеличение концентрации в мышцах креатинфосфата и повышение активности фермента креатинкиназы в совокупности это приведет к повышению так называемого алактатного кислородного долга.

      Результатом тренировок, направленных на повышение эффективности гликолитического пути ресинтеза АТФ станет: увеличение концентрации в мышечных клетках внутримышечного гликогена и повышение активности основных ферментов гликолиза – фосфорилазы и фосфофруктокиназы. Так же повысится резистентность (нечувствительность) тканей к снижению водородного показателя (рН), повысится эффективность буферных систем крови.

      Ни в коем случае нельзя забывать о тренировке аэробного механизма энергообеспечения. Это очень важно, для представителей всех специализаций. В трудности аэробный механизм помогает восстановить концентрацию креатинфосфата в местах «отдыха» на трассе, хорошо развитые дыхательная и сердечно-сосудистая системы и система крови помогут утилизировать часть лактата. В боулдеринге, аэробный механизм так же помогает восстановить потенциал креатинфосфатного пути ресинтеза АТФ в перерыве между попытками и трассами (в рамках соревнований). В скоростном лазании, аэробный компонент полезен в случаях перестартовок, обеспечивая восстановление ведущего пути ресинтеза АТФ для данного соревновательного упражнения.

      Задача данной статьи – познакомить с механизмами энергообеспечения мышечной деятельности, многие аспекты, затронутые в ней, раскрыты поверхностно, т.к. статья ориентирована на широкий круг читателей. Методики воспитания отдельных видов выносливости будут описаны в следующих статьях.

      Все замечания и пожелания можно оставлять в комментариях или отправлять лично автору на электронный адрес: [email protected]

Таблица 2 - Классификация избыточной массы тела и ожирения по содержанию жира в теле

Низкое 6-10 % 14-18 %

Нормальное 11-17 % 19-22 %

Избыточное 18-20 % 23-30 %

Ожирение Более 20 % Более 30 %

Кроме процентного содержания жира в организме важно отметить его распределение на теле. Для этих целей существует показатель отношения окружности талии к окружности бедер (ОТ/ОБ). Для мужчин этот коэффициент должен быть менее 0,95, а для женщин менее 0,85. Величина ОТ/ОБ для мужчин более 1,0 и женщин более 0,85

Доказано, что ОТ, равная 100 см, косвенно свидетельствует о таком объеме висцеральной жировой ткани, при котором, как правило, развиваются метаболические нарушения и значительно возрастает риск развития сахарного диабета 2 типа.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Шутова, В. И. Ожирение, или синдром избыточной массы тела / В. И. Шутова, Л. И. Данилова // Медицинские новости. - Минск, 2004. - № 7. - С. 41-47.

2. Аметов, А. С. Ожирение и сердечно-сосудистые заболевания / А. С. Аметов, Т. Ю. Демидова, А. Л. Целиковская // Терапевт. арх. - 2001. - T. 73, № 8. - С. 66-69.

3. Вербовая, Н. Е. Ожирение и соматотропный гормон: причинно-следственные отношения / Н. Е. Вербовая, С. В. Булгакова // Проблемы эндокринологии. - М.: Медиа Сфера, 2001. - № 3. - С. 44-47.

4. Глюкозоиндуцированный термогенез у лиц с ожирением / Н. Т. Старкова [и др.] // Пробл. эндокринологии. - 2004. - Т. 50, № 4. - С. 16-18.

5. Milewicz, A. Perimenopausal obesity / A. Milewicz, B. Bidz-inska, A Sidorowicz // Gynecol Endocrinol. - 1996. - № 10(4). - Р. 285-291. Review PMID: 8908531 (проблемы эндокринологии 1998. - № 1. - С. 52-53).

свидетельствует об абдоминальном типе ожирения. Показателем клинического риска развития метаболических осложнений ожирения является также величина окружности талии. Исследования подтвердили тесную корреляцию между степенью развития висцеральной жировой ткани и величиной окружности талии (таблица 3).

6. Краснов, В. В. Масса тела больного ишемической болезнью сердца: спорные и нерешенные вопросы / В. В. Краснов // Кардиология. - 2002. - № 9. - С. 69-71.

7. Аметов, А. С. Принципы питания больных ожирением / А. С. Аметов // Диабет. Образ жизни. - М., 1997. - № 7. - С. 28-30.

8. Вознесенская, Т. Г. Ожирение и метаболизм / Т. Г. Вознесенская // Расстройства пищевого поведения при ожирении и их коррекция. - 2004. - № 2. - С. 25-29.

9. Справочник по клинической фармакологии / Е.А. Холодова [и др.]; под ред. Е. А. Холодовой. - Минск: Беларусь, 1998. - С. 259-277.

10. Окороков, А. Н. Лечение болезней внутренних органов / А. Н. Окороков. - Минск: Выш. шк., 1996. - Т. 2. - С. 455-472.

11. Балаболкин, М. И. Дифференциальная диагностика и лечение эндокринных заболеваний / М. И. Балаболкин, Е. М. Клебанова, В. М. Креминская. - М.: Медицина, 2002. - 751 с.

12. Клиорин, А. И. Ожирение в детском возрасте / А. И. Клио-рин. - Л.: Медицина, 1989. - 256 с.

13. Дедов И. И. Обучение больных ожирением (программа) / И. И. Дедов, С. А. Бутрова, Л. В. Савельева. - М., 2002. - 52 с.

14. Lavin, N. Manual of Endocrinology and Metabolism / N. Lavin. - 2-nd. ed. - Boston: Little, Brown and Company, 1994. - P. 38, 66, 138, 154, 357, 384, 387.

15. Данилова, Л. И. Метаболический синдром: диагностические критерии, лечебные протоколы: учеб.-метод. пособие / Л. И. Данилова, Н. В. Мурашко. - Минск: БелМАПО, 2005. - 26 с.

Поступила 15.05.2014

Таблица 3 - Корреляционная связь между висцеральной жировой тканью и величиной окружности талии

Повышенный риск Высокий риск

Более или равно 94 см Более или равно 102

Более или равно 80 см Более или равно 88 см

УДК: 612.017.2:612.013.7:611.73]:612.766.1

ВЗАИМОДЕЙСТВИЕ И АДАПТАЦИЯ СИСТЕМ ЭНЕРГООБЕСПЕЧЕНИЯ СКЕЛЕТНЫХ МЫШЦ ПРИ ФИЗИЧЕСКИХ НАГРУЗКАХ

Ю. И. Брель

Гомельский государственный медицинский университет

В настоящее время интерес к изучению изменений процессов энергообеспечения при физической нагрузке связан с использованием современных методик исследования аэробного и анаэробного метаболизма скелетных мышц, а также с высокой практической значимостью оценки энергообмена в спортивной медицине для разработки критериев коррекции тренировочного процесса и диагностики перетренированности.

Предлагаемый обзор освещает современные представления о взаимодействии и адаптации систем энергообеспечения при физических нагрузках различной интенсивности и продолжительности.

Ключевые слова: физические нагрузки, энергетический обмен, аэробный метаболизм, анаэробный метаболизм.

INTERACTION AND ADAPTATION OF ENERGY SYSTEMS OF SKELETAL MUSCLES DURING PHYSICAL EXERCISE

Yu. I. Brel Gomel State Medical University

Nowadays, the interest to study of changes in processes of energy supply in physical exercise is associated with the use of modern methods of study of aerobic and anaerobic metabolism in skeletal muscles, and also assessment of energy interchange in sport medicine for correction of training process and diagnostics of overtraining syndrome with high practical significance. This review covers contemporary notions on interaction and adaptation of energy systems in skeletal muscles during physical exercises of different intensity and duration.

Key words: physical exercise, energy exchange, aerobic metabolism, anaerobic metabolism.

Введение

Изучение взаимодействия основных систем энергообеспечения и механизмов, обеспечивающих повышение эффективности их работы при интенсивных физических нагрузках, представляет большой теоретический и практический интерес, так как служит основой для разработки критериев оценки функционального состояния спортсменов и коррекции тренировочного процесса. В настоящее время актуальность изучения изменений процессов энергообеспечения при физической нагрузке связана с возможностью использования современных методик исследования аэробного и анаэробного метаболизма скелетных мышц. Активно изучаются анаэробные механизмы энергообеспечения мышечной работы, их относительный вклад в энергопродукцию при различных физических нагрузках. Возрастает интерес к исследованию механизмов влияния дефицита энергетических субстратов в развитии синдрома перетренированности и других нарушений функционального состояния организма спортсменов . Предлагаемый обзор освещает современные представления о взаимодействии основных систем энергообеспечения и адаптации энергетического обмена при физических нагрузках различной интенсивности и продолжительности.

Источники энергии при мышечной деятельности

Энергию для мышечного сокращения дает расщепление аденозинтрифосфата (АТФ). Так как запасы АТФ в мышцах невелики и достаточны для обеспечения высокоинтенсивной работы в течение 1-2 с, для продолжения мышечного сокращения необходим ресинтез АТФ. Восстановление АТФ происходит с помощью трех различных, но тесно взаимосвязанных энергосистем: фосфагенной, гликоли-тической и окислительной. В зависимости от интенсивности и продолжительности выпол-

няемой физической нагрузки вклад в энергообеспечение вышеперечисленных механизмов энергопродукции существенно отличается .

Фосфагенная энергетическая система (система АТФ-креатинфосфат) использует для ре-синтеза АТФ энергию, высвобождающуюся при расщеплении креатинфосфата (КФ). Данный путь энергообразования обеспечивает быстрое восстановление АТФ, однако запасы КФ ограничены и достаточны для удовлетворения энергетических потребностей мышц лишь в течение 315 с интенсивной физической нагрузки. Фосфа-генная система в значительной степени определяет спортивную результативность в видах спорта с кратковременными одиночными или ограниченным числом повторных интенсивных мышечных сокращений (в частности, тяжелая атлетика, метание, прыжки и др.) . Ранее предполагалось, что на начальном этапе высокоинтенсивной мышечной работы ресинтез АТФ происходит исключительно за счет расщепления КФ. В настоящее время доказано, что при интенсивных физических нагрузках активация гликолиза происходит достаточно быстро и считается, что при максимальных нагрузках система АТФ-креатинфосфат доминирует в доле общей продукции АТФ в течение 5-6 с, а максимальная скорость распада КФ наблюдается на 1,3 с с последующим постепенным уменьшением .

Поскольку энергетическая мощность фос-фагенной системы зависит от концентрации КФ, способность спортсменов к быстрому восстановлению запасов КФ важна для спортивной результативности. Исследования с использованием метода 31Р-магнитно-резонансной спектроскопии показали, что практически полное пополнение запасов КФ занимает 5-15 мин в зависимости от степени уменьшения его количества, выраженности метаболического ацидоза и типа мышечных волокон. .

Лактатная (гликолитическая) система обеспечивает медленное восстановление АТФ в анаэробных условиях за счет энергии расщепления глюкозы (выделяемой из гликогена) реакцией гликолиза с образованием молочной кислоты (лактата). Особое значение этот путь энергообразования имеет при продолжительной физической нагрузке высокой интенсивности, продолжающейся до 1-2 мин (например, при беге на средние дистанции), а также при резком увеличении мощности более длительной и менее напряженной работы (ускорения при беге на длинные дистанции) и при недостатке кислорода во время выполнения статической работы . Лактатная система мене эффективна по сравнению с аэробным механизмом по количеству образующейся энергии, к тому же высвобождение энергии при гликолизе ограничено вследствие ингибирования гликолитических ферментов при накоплении молочной кислоты и снижении рН, приводит к уменьшению ресинтеза АТФ . Ранее считалось, что гликолиз начинается после истощения запасов КФ. В настоящее время результаты многих исследований показали, что ресинтез АТФ посредством гликолиза при интенсивной мышечной работе начинается практически немедленно после начала нагрузки и достигает максимума на 10-15 с нагрузки .

Окислительная система обеспечивает энергией работу мышц в аэробных условиях за счет реакций окисления жиров и углеводов. Для длительной физической нагрузки (бег на длинные дистанции, лыжные гонки, велогонки и др.) данный источник энерообеспечения является ведущим. Основными субстратами для аэробного метаболизма являются мышечный гликоген (хотя вклад глюкозы плазмы крови увеличивается с продолжительностью нагрузки) и свободные жирные кислоты, получаемые из запасов триглицеридов в мышцах и жировой ткани. Относительный вклад этих двух источников зависит от интенсивности и продолжительности нагрузки и от тренированности спортсмена . Во время субмаксимальной нагрузки в процесс энергообеспечения первыми включаются углеводы, текущие запасы которых ограничены (у тренированных спортсменов запасов углеводов достаточно для совершения непрерывной физической нагрузки в течение 60-90 мин), а затем жиры. Наибольший вклад жирных кислот в аэробную продукцию АТФ наблюдается при интенсивности нагрузки, составляющей 60 % от максимального потребления кислорода .

Предполагалось, что участие белков в образовании энергии во время мышечной работы незначительно. Однако результаты последних исследований показывают, что во время физической нагрузки продолжительностью не-

сколько часов вклад белков в общий энергетический метаболизм может составлять до 10-15 %, что сопровождается разрушением белковых структур преимущественно скелетной мускулатуры и обуславливает необходимость ежедневного восполнения потери белков при регулярных занятиях спортом .

Традиционно считалось, что в обеспечении работоспособности при высокоинтенсивных кратковременных физических нагрузках аэробная энергетическая система играет незначительную роль и включается в процесс энергообразования на 2-3 минуте от начала нагрузки. Последние исследования показали, что все системы энергообеспечения в той или иной степени задействованы при всех видах мышечной работы и аэробная система достаточно быстро реагирует на энергетические нужды при интенсивных нагрузках, хотя и не способна их обеспечить на начальных этапах нагрузки . Проведя анализ результатов более 30 исследований, оценивающих вклад анаэробной системы во время максимальных нагрузок, Gastin показал, что продолжительность максимальной физической нагрузки, при которой наблюдается равный вклад в энергопродукцию аэробных и анаэробных энергетических систем, находится в промежутке между 1 и 2 мин, и составляет в среднем около 75 с .

Методы оценки систем энергообеспечения и расхода энергии

Аэробный путь высвобождения энергии при окислении углеводов и жиров можно оценить количественно, так как есть прямая корреляция между потреблением О2 и общей аэробной продукцией АТФ . Использование метода непрямой калориметрии и определение дыхательного коэффициента (отношение выделенного СО2 к поглощенному О2), характеризующего вид окисленного субстрата (углеводы, жиры или белки), с последующим определением расхода энергии обеспечивает достаточно точную оценку аэробной энергопродукции. Ограничения использования данного метода связаны с тем, что при выполнении физического упражнения высокой интенсивности количество СО2, выделяемого легкими, может не соответствовать производимому в тканях, и таким образом его можно считать достаточно надежным только при выполнении упражнений умеренной интенсивности. К тому же вследствие того, что белки в организме окисляются не полностью, на основании дыхательного коэффициента невозможно точно определить величину использования белков .

Важным показателем мощности аэробных процессов является максимальное потребление кислорода (МПК) - предельная величина поступления в организм кислорода за 1 мин.

МПК выражается в литрах в минуту и может быть определено с помощью субмаксимальных проб (непрямой метод) и максимальных проб (прямой метод). Во время нагрузки на уровне МПК энергообеспечение организма осуществляется как аэробным, так и анаэробным путями. Поскольку анаэробное энергообеспечение ограничено, интенсивность нагрузки на уровне МПК не может поддерживаться долго (не более 5 мин). Для определения МПК прямым методом используются чаще всего велоэргометр и газоанализаторы, однако от испытуемого требуется желание выполнить работу до отказа, что не всегда достижимо. Непрямые методы определения МПК основаны на линейной зависимости МПК и ЧСС при работе определенной мощности. По мнению многих исследователей, МПК позволяет достаточно точно оценить кардиореспираторную выносливость и аэробную подготовленность, однако не является характерным показателем функциональных возможностей спортсменов при тренировке на выносливость .

Методы количественной оценки анаэробного пути энергообеспечения менее точны по сравнению с таковыми для аэробного метаболизма. Предложены многочисленные методики, однако, поскольку анаэробный продукция АТФ является внутриклеточным процессом, это затрудняет прямую оценку достоверности существующих методов. К традиционно используемым методикам оценки анаэробного энергообеспечения относят определение величины кислородного долга, измерение концентрации лактата крови и эргометрию .

Кислородный долг представляет собой повышенное по сравнению с состоянием покоя потребление кислорода, которое продолжается некоторое время после завершения физической нагрузки. Использование величины кислородного долга для оценки анаэробного пути энергообеспечения было основано на предположении, что объем кислорода, потребляемого после нагрузки, связан с метаболизмом лактата во время восстановительного периода . Ва^8Ьо с соавт. обнаружил, что использование данного метода привело к значительной переоценке вклада анаэробной системы в энергообеспечение интенсивной мышечной работы. Выявлено несоответствие между количеством потребленного в восстановительный период кислорода и накоплением и метаболизмом лактата . Было продемонстрировано, что классическое объяснение избыточного потребления кислорода слишком упрощено и сочетание целого ряда факторов, не связанных напрямую с анаэробным высвобождением энергии, обусловливает повышенную потребность в кислороде после выполнения физической работы. К числу таких факторов относят воспол-

нение запасов кислорода, содержащихся в ми-оглобине и гемоглобине и расходованных при физической нагрузке, увеличение гормональной активности (в частности, концентрации адреналина и норадреналина), повышение температуры тела, учащение дыхания и общее увеличение энергозатрат, связанное с восстановлением гомеостаза..

Концентрацию лактата в крови часто используют как критерий оценки интенсивности физической нагрузки и как показатель, отражающий анаэробный путь высвобождения энергии при мышечной работе. В покое у здорового человека концентрация лактата составляет 12 ммоль/л. У хорошо тренированных на выносливость спортсменов при длительных нагрузках низкой интенсивности показатели лактата не превышают аэробного порога (2 ммоль/л). При данной интенсивности нагрузки энергообеспечение происходит полностью аэробным путем. При повышении интенсивности нагрузки к обеспечению нагрузки подключается анаэробная система, однако, если в организме сохраняется равновесие между выработкой и элиминацией молочной кислоты, концентрация лак-тата находится в пределах 2-4 ммоль/л. Данный диапазон интенсивности называется аэробно-анаэробной транзитной зоной. Резкое увеличение концентрации лактата в крови указывает на то, что спортсмен работает в анаэробной зоне. Граница между аэробно-анаэробной транзитной зоной и анаэробной зоной называется анаэробным порогом. Обычно концентрация лактата на уровне анаэробного порога составляет 4 ммоль/л. Лактатный тест определения анаэробного порога спортсмена, основанный на зависимости между уровнем лактата в крови и интенсивностью нагрузки, используется для оценки функционального состояния спортсмена и коррекции тренировочного процесса .

Однако в настоящее время гипотеза лак-татного порога подвергается критике в связи с множеством противоречий и неточностью не-инвазивных методов определения величины анаэробного порога. Продемонстрировано, что хотя лактат крови отражает интенсивность гликолиза, он не может быть использован для точной количественной оценки продукции лактата в мышцах. В частности, было показано, что концентрация лактата в крови при физических нагрузках достоверно ниже концентрации лактата в мышцах , а измерение концентрации лактата в крови не дает информации о скорости его образования, а лишь отражает баланс между выходом лактата в кровь и его устранением из крови . В настоящее время отстаивание гипотезы лактатно-го порога продолжается, поскольку она имеет практическую ценность, позволяя оценивать

работоспособность и уровень физической подготовки спортсменов .

Эргометрические измерения часто используются как неинвазивные непрямые методы измерения мощности всех трех систем энергообеспечения и основаны на том, что вклад систем энергообеспечения зависит от интенсивности и продолжительности работы, и в данных тестах выбирается такая продолжительность нагрузки, которая максимально увеличивает вклад одной системы энергообеспечения при минимизации участия других систем . Однако особенности активации и вклада каждой энергосистемы затрудняет точную оценку энергообмена. В частности, тот факт, что гликолитический процесс, приводящий к формированию лактата, инициируется в течение первых нескольких секунд интенсивной физической нагрузки, делает невозможным различение алактаного и лактаного компонентов анаэробного метаболизма. . Также необходимо учитывать, что аэробный путь вносит значительный вклад в энергообеспечение даже при максимальной нагрузке продолжительностью 30 с .

Применение техники биопсии мышечной ткани позволило проводить непосредственные измерения уменьшения количества АТФ и КФ и накопления лактата в исследуемой мышце и, следовательно, оценить общею анаэробную продукцию энергии организма с учетом активной мышечной массы, задействованной при определенной физической нагрузке . Сложности в использовании метода связаны с вопросами репрезентативности образца мышцы и возможной недооценки участия анаэробного пути вследствие метаболических изменений, происходящих в промежуток времени между окончанием нагрузки и взятием биопсийного материала .

Особенности адаптации систем энергообеспечения и метаболизма к аэробным и анаэробным нагрузкам

Систематическая аэробная тренировка приводит к увеличению в тренированных мышцах запасов гликогена, что связано с активным использованием мышечного гликогена во время каждого тренировочного занятия и со стимулированием механизмов, обеспечивающих его ресинтез, а также увеличению количества триглицеридов. Механизмы, обеспечивающие повышенное содержание источников энергии у тренированного на развитие выносливости спортсмена, изучены недостаточно. Тем не менее выявлено, что после 8 недель занятий содержание триглицеридов в мышце увеличивается в 1,8 раза, а также происходит перераспределение вакуолей, содержащих триг-лицериды, по мышечному волокну ближе к митохондриям, что обуславливает облегчение их использования в качестве источника энергии во время физической нагрузки .

При тренировке на выносливость повышается активность многих мышечных ферментов, участвующих в окислении жиров, а также наблюдается увеличение количества свободных жирных кислот в крови, в результате экономятся запасы мышечного гликогена и отсрочивается возникновение утомления. Таким образом, увеличение аэробной выносливости мышц обусловлено увеличением способности образования энергии с большим акцентом на использование жиров для синтеза АТФ .

Тренировка анаэробной направленности повышает уровень анаэробной деятельности вследствие увеличения в большей степени силовых качеств, чем повышения эффективности функционирования анаэробных систем образования энергии. Имеется небольшое количество исследований, посвященных изучению адаптационных реакций системы АТФ-креатинфосфат на кратковременную максимальную нагрузку. Продемонстрировано, что максимальные физические нагрузки спринтерского типа (продолжительностью 6 с) способствуют повышению силовых качеств, однако практически не влияют на эффективность процесса образования энергии за счет расщепления АТФ и КФ . Вместе с тем в другом исследовании наблюдалось повышение активности ферментов фосфа-генной системы вследствие циклов тренировочных нагрузок продолжительностью 5 с .

Тренировка анаэробной направленности с циклами нагрузки продолжительностью 30 с повышает активность ряда ключевых гликоли-тических и окислительных ферментов. Показано, что активность таких гликолитических ферментов, как фосфорилаза, фосфофруктокиназа и лактатдегидрогеназа повышается на 10-25 % в результате выполнения 30-секундных циклов физической нагрузки и практически не изменяется вследствие выполнения кратковременных (6-секундных) циклов, главным образом воздействующих на систему АТФ-КФ . Однако оба вида нагрузок в одинаковой степе -ни влияли на работоспособность и интенсивность утомления, что указывает на преимущественное увеличение силовых качеств, чем увеличение анаэробного образования АТФ.

Поскольку определенное количество энергии, необходимой для выполнения кратковременных нагрузок продолжительностью не менее 30 с, обеспечивается за счет окислительного метаболизма, кратковременные физические нагрузки спринтерского типа также увеличивают аэробные возможности мыши . Таким образом, помимо увеличения силы, повышение эффективности мышечной деятельности и задержка возникновения утомления при тренировочных нагрузках анаэробной направленности могут быть обусловлены улучшением аэробных возможностей мышц.

Особое значение имеет изучение изменений метаболизма и энергообеспечения при возникновении синдрома перетренированности у спортсменов. Это связано с тем, что перетренированность не только приводит к снижению физической работоспособности, но и к негативному влиянию на другие системы организма, в частности, снижению иммунитета и подверженности инфекционным заболеваниям верхних дыхательных путей, а также с тем, что для устранения перетренированности необходимо прекращение тренировок на срок от нескольких недель до нескольких месяцев .

В настоящее время единственным диагностическим критерием развития перетренированности является снижение физической работоспособности спортсмена, и актуальным является разработка достаточно информативных показателей для прогнозирования возникновения данного синдрома и его диагностики на начальных этапах развития. Среди существующих в настоящее время гипотез развития перетренированности аспекты изменения метаболизма и энергообмена занимают важное место. В частности, углеводная гипотеза объясняет развитие перетренированности тем, что при утомлении возникает преходящая гипогликемия, связанная с истощением запасов гликогена мышц и печени, которая усугубляется в случае недостаточного потребления углеводов с пищей. Выявлено, что гипогликемия при физической нагрузке носит более выраженный характер у перетренированных спортсменов , в то время как увеличение лактата может быть невысоким , что указывает на незначительное участие гликолиза в метаболизме скелетных мышц у таких спортсменов. Однако хотя при перетренированности спортсмены имеют более значительное снижение запасов гликогена при продолжительных нагрузках, наблюдается достаточное восстановление запасов гликогена в период между нагрузками . Предполагается, что повторяющееся истощение запасов гликогена может приводить к изменению других метаболических путей, участвующих в энергообеспечении мышечной нагрузки, в частности, к увеличению окисления аминокислот с разветвленной цепью (лейцин, изолейцин, валин), изменение метаболизма которых связывают с возникновением процессов утомления в центральной нервной системе .

В настоящее время в качестве биохимических маркеров для диагностики синдрома перетренированности и оценки изменения систем энергообеспечения, помимо определения увеличения лактата крови, предлагается использовать следующие параметры: увеличение в крови концентрации мочевины, снижение глюкозы и глютамина, а также уменьшение коэффициента соотношения концентрации свободного

триптофана к концентрации аминокислот с разветвленной цепью. Однако ни один из вышеперечисленных параметров не может служить стандартом диагностики, что диктует необходимость дальнейшего изучения изменений метаболизма при развитии синдрома перетренированности .

Заключение

При интенсивной физической нагрузке ре-синтез АТФ в мышцах происходит в анаэробных условиях за счет расщепления КФ и гликолиза, а в аэробных условиях за счет реакций окисления углеводов, жиров и белков. Анализ литературных данных демонстрирует, что все три системы энергообеспечения в той или иной степени активированы при всех видах мышечной работы, однако относительный вклад каждой из систем зависит от интенсивности и продолжительности выполняемой физической нагрузки. Показано, что хотя анаэробные механизмы в значительной степени обеспечивают ресинтез АТФ при высокоинтенсивных и кратковременных физических нагрузках, аэробная энергетическая система также играет значительную роль в обеспечении работоспособности при таких нагрузках. Существующие методы оценки систем энергообеспечения (непрямая калориметрия, определение максимального потребления кислорода) позволяют достаточно точно оценить аэробный путь высвобождения энергии. В то же время традиционно используемые методики оценки анаэробного энергообеспечения (определение величины кислородного долга, измерение концентрации лактата крови и эргомет-рия) являются менее точными. При адаптации к аэробным нагрузкам в тренированных мышцах происходит увеличение запасов гликогена и триглицеридов и усиление процессов окисления жиров. Тренировка анаэробной направленности повышает физическую работоспособность преимущественно вследствие развития силовых качеств. При развитии перетренированности у спортсменов наблюдается гипогликемия при незначительном увеличении лактата крови, а также усиление процессов окисления аминокислот с разветвленной цепью и последующим развитием центрального утомления.

Дальнейшее изучение взаимодействия основных систем энергообеспечения и их роли в развитии изменений функционального состояния спортсменов позволит разработать универсальные критерии оценки эффективности тренировочного процесса, обосновать необходимость назначения средств фармакологической поддержки, а также выявить информативные биохимические маркеры для диагностики патологических изменений организма при интенсивных физических нагрузках.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Солодков, А. С. Физиология человека. Общая. Спортивная. Возрастная / А. С. Солодков, Е. Б. Сологуб. - М: Олимпия Пресс, 2005. - 528 с.

2. Medbo, J. I. Effect of training on the anaerobic capacity / J. I. Medbo, S. Burgers // Med Sci Sports Exerc. - 1990. - Vol. 22. - P. 501-507.

3. Active and passive recovery and acid-base kinetics following multiple bouts of intense exercise to exhaustion / J. C. Siegler // Int J Sport Nutr Exerc Metab. - 2006. - Vol. 16. - P. 92-107.

4. Greenhaff, P. L. Interaction between aerobic and anaerobic metabolism during intense muscle contraction / P. L. Greenhaff, J. A Timmons // Exercise and Sport Sciences Reviews. - 1998. - Vol. 26. - P. 1-36.

5. Interaction among skeletal muscle metabolic energy systems during intense exercise / J. S. Baker // J. Nutr Metab. - 2010. - P. 3-17.

6. Metabolic response of type I and II muscle fibers during repeated bouts of maximal exercise in humans / A. Casey // American Journal of Physiology. - 1996. - Vol. 271, № 1. - P. 38-43.

7. Westerblad, H. Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability / H. Westerblad, J. D. Bruton, A. Katz // Exp. Cell Res. - 2010. - Vol. 18. - P. 93-99.

8. Katz, A. Regulation of glucose utilization in human skeletal muscle during moderate exercise / A. Katz, K. Sahlin, S. Broberg // Am. J. Physiol. - 1991. - Vol. 3. - P. 411-416.

9. Sahlin, K. Energy supply and muscle fatigue in humans / K. Sahlin, M. Tonkonogi, K. Soderlund // Acta Physiol Scand. - 1998. - Vol. 3. - P. 261-267.

10. Gastin, P. B. Energy system interaction and relative contribution during maximal exercise / P. B. Gastin // Sports Med. - 2001. - Vol. 31, № 10. - P. 725-741.

11. Уилмор, Дж. Х. Физиология спорта и двигательной активности / Дж. Х. Уилмор, Д. Л. Костил. - Киев: Олимпийская литература, 1997. - 504 с.

12. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans / J Bangsbo // J Physiol. - 1990. - Vol. 422. - P. 539-559.

13. Vandewalle, H. Standard anaerobic exercise tests / H. Vande-walle, G. Peres, H. Monod // Sports Med. - 1987. - Vol. 4. - P. 268-289.

14. Янсен, П. ЧСС, лактат и тренировки на выносливость / Петер Янсен // Мурманск: Тулома, 2006. - 160 с.

15. Jacobs, I. Lactate in blood, mixed skeletal muscle and FT or ST fibres during cycle exercise in man // I. Jacobs, P. Kaiser // Acta Physiol Scand. - 1982. - Vol. 114. - P. 461-467.

16. Tesch, P. A. Lactate accumulation in muscle and blood during submaximal exercise // P. A. Tesch, W. L. Daniels, D. S. Sharp // Acta Physiol Scand. - 1982. - Vol. 114. - P. 4641-446.

17. The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science / V. L. Billat // Sports Med. - 2005. - Vol. 33. - P. 407-426.

18. Robergs, R. A. Biochemsitry of exercise-induced metabolic acidosis / R. A. Robergs, F. Ghiasvand, D. Parker // American Journal of Physiology: Regulatory, Integrative and Comparative Physiology. - 2004. - Vol. 287. - P. 502-516.

19. Negligible direct lactate oxidation in subsarcolemmal and intermyofibrillar mitochondria obtained from red and white rat skeletal muscle / Y. Yoshida // J Physiol. - 2007. - Vol. 2. - P. 705-706.

20. Human muscle metabolism during intermittent maximal exercise / G. C. Gaitanosl // J Appl Physiol. - 1993. - Vol. 2. - P. 712-721.

21. Bangsbo, J. Quantification of anaerobic energy production during intense exercise / J. Bangsbo // Med Sci Sports Exerc. - 1998. - Vol. 1. - P. 47-52.

22. Adaptations in skeletal muscle following strength training / D. L. Costill // Journal of Applied Physiology: Respiratory Environmental Exercise Physiology. - 1979. - Vol. 46. - P. 96-99.

23. Thorstensson, A. Enzyme activities and muscle strength after sprint training in man / A. Thorstensson, B Sjodin, J. A. Karlsson. // Acta Physiol Scand. - 1975. - Vol. 94. - P. 313-318.

24. Biochemical aspects of overtraining in endurance sports / C. Peti-bois // Sports Med. - 2002. - Vol. 13. - P. 867-878.

25. Petibois, C. FT-IR spectroscopy utilization to athletes fati-gability evaluation and contro / C. Petibois, G. Cazorla, G. Deleris // Med Sci Sports Exerc. - 2000. - Vol. 32. - P. 1803-1808.

26. Snyder, A. C. Overtraining and glycogen depletion hypothesis / A. C. Snyder // Med Sci Sports Exerc. - 1998. - Vol. 30. - P. 1146-1150.

27. Bosquet, L. Blood lactate response to overtraining in male endurance athletes / L. Bosquet, L. Leger, P. Legros // Eur J Appl Physiol. - 2001. - Vol. 84. - P. 107-114.

28. Jeukendrup, A. Overtraining: what do lactate curves tell us / A. Jeukendrup, M. Hesselink // Br J Sports Med. - 1994. - Vol. 28. - P. 239-240.

29. Lehmann, M. Overtraining in endurance athlete / M. Lehmann, C. Foster J. Keul // Med Sci Sports Exerc. - 1993. - Vol. 25. - P. 854-862.

Поступила 16.05.2014

УДК 616-018.2-007.17:612.014.2

АНАТОМИЧЕСКИЕ ОСОБЕННОСТИ ВЕНОЗНОГО РУСЛА ГОЛЕНИ

(обзор литературы)

С. А. Семеняго, В. Н. Жданович Гомельский государственный медицинский университет

В ходе детального анализа отечественных и зарубежных литературных источников проведено структурирование венозной системы голени с описанием вариантов строения некоторых отделов. Также даны понятия коммуникантных и перфорантных вен, венозных синусов голени с указанием их значения для клиницистов. Описаны наиболее значимые коммуниканты и перфоранты и приведены данные по их локализации.

Ключевые слова: венозная система, перфоранты, коммуниканты, варикозное расширение вен.

ANATOMIC FEATURES OF VENOUS SYSTEM OF THE LOWER LEG

(literature review)

S. A. Semeniago, V. N. Zhdanovich Gomel State Medical University

The review gives a detailed analysis of national and foreign publications and describes the structure and variations of the venous system of the lower leg. It also gives notions and clinical importance of communicating and perforating veins and venous sinuses of the lower leg. The most significant communicating and perforating veins and their localization were described.

Key words: venous system, perforating veins, communicating veins, varicose veins.