Чем смазывать велосипед: советы по выбору смазки. Эксплуатация централизованных систем густой смазки

Работоспособность техники и эффективность функционирования зависят от их обеспеченности высокоэффективными смазочными материалами (масла, смазки, смазочно-охлаждающие жидкости).

Основным назначением смазок является обеспечение снижения трения и износа в трущихся деталях механизмов, что позволяет повысить механический КПД двигателя, защитить трущиеся пары от износа и заеданий. Вторая их важная роль – теплоотвод от двигателя и нагревающихся при трении деталей. Кроме того, смазка защищает детали от коррозии, смывает и удаляет загрязнения, обеспечивает уплотнение, а в некоторых случаях – выполняет специальные задачи: например, служит разделяющим слоем между формой и отливкой.

К смазочному материалу предъявляется также ряд требований, не связанных с его рабочими функциями, но необходимых с точки зрения эргономических и экологических свойств. Смазки должны быть нетоксичными, не обладать неприятным запахом, не загрязнять окружающую среду, быть биостойкими, а в определенных условиях и биоразлагаемыми.

Они должны хорошо совмещаться с конструкционными материалами, фильтроваться и прокачиваться, не образовывать пену при контакте с воздухом. Смазки должны удерживаться в узле трения, не высыхать при действии высоких температур, не упрочняться в процессе работы.

Специальные смазочные материалы должны удовлетворять особым требованиям, например, быть стойкими к контакту с агрессивными средами, обладать высоким удельным электрическим сопротивлением, или напротив, хорошей проводимостью.

В наибольшем объеме используются смазочные масла. Этому способствуют их сравнительно невысокая стоимость и удобство применения.

Смазки применяют в таких узлах трения, где использование жидких масел затруднено или нерационально. Наиболее распространены пластичные (консистентные) смазки. Их мировое производство составляет около миллиона тонн в год, что значительно меньше выпуска смазочных масел (около 40 млн т в год).

Пластичные смазки представляют собой густые мази, предназначенные для смазывания подшипников качения различных типов, шарниров, рычажных, кулачково-эксцентриковых систем и др. В отличие от жидких масел, пластичные смазки обладают сдвиговой прочностью.

Пластичные смазки обладают следующими достоинствами:

    Удерживаются на наклонной и вертикальной поверхностях;

    Не выдавливаются из контакта, обладают хорошей смазочной способностью в довольно широком интервале температуры, способны герметизировать узел;

    Обеспечивают малый расход смазки, позволяют упростить конструкцию узла;

    Снизить металлоемкость, сократить затраты на обслуживание.

К числу недостатков относят низкую теплопроводность, накопление продуктов изнашивания и др. Пластичные смазки больше, чем жидкие масла, склонны к окислению и распаду.

Пластичными смазками набиваются полости узлов трения. Замена смазки производится во время техобслуживания. В ряде узлов предусмотрено пополнение запаса смазки с помощью пресс-масленок.

В Украине выпускается около 150 видов смазок. Смазки классифицируют по консистенции, составу и областям применения .

По консистенции смазки разделяют на полужидкие, пластичные и твердые.

Пластичные и полужидкие смазки представляют собой коллоидные системы, состоящие из дисперсионной среды, дисперсной фазы, а также присадок и добавок. Наибольшее применение пластичные смазки получили в подшипниках качения и скольжения, шарнирах, зубчатых, винтовых и цепных передачах, многожильных тросах.

Твердые смазки до отвердения являются суспензиями, дисперсионной средой которых служит смола или другое связующее вещество и растворитель, а загустителем – дисульфид молибдена, графит, технический углерод и др. После отвердения (испарения растворителя) твердые смазки представляют собой золи, обладающие всеми свойствами твердых тел и характеризующиеся низким коэффициентом сухого трения.

Наиболее распространенной группой являются пластичные смазки, которые по консистенции занимают промежуточное положение между жидкими маслами и твердыми смазочными материалами.

В состав пластичных смазок входят: базовое масло (70-90%), загуститель и присадки.

Содержание загустителей в смазках составляет, как правило, 10-15%, при низкой загущающей способности – до 20-30% по массе. Именно загуститель в обычных условиях позволяет смазке вести себя как твердому телу, а при приложении нагрузки – течь как жидкости. Собственно говоря, разновидность и количество загустителя определяют эксплуатационные свойства пластичной смазки, поэтому по загустителю устанавливают тип смазки.

Улучшение качества смазок достигается введением различных присадок (0,001-5% по массе), в качестве которых обычно используются органические соединения, растворимые в дисперсионной среде и оказывающие существенное влияние на формирование структуры и реологические свойства смазок. В качестве антиокислительной присадки чаще всего используют ионол, антикоррозионной – нитрованный окисленный петролатум, противоизносной – трикрезилфосфат и т.д.

Кроме присадок, характерных для масел, в пластичную смазку могут добавляться твердые добавки (антифрикционные, герметизирующие) такие, как дисульфид молибдена (MoS2) или графит.

По составу в зависимости от типа дисперсионной среды выделяют смазки на нефтяных (минеральных) и синтетических маслах. Из минеральных масел, используемых при изготовлении пластичных смазок, наибольшее применение нашли индустриальные масла марок 12, 20, 30, 45 и 50 (ГОСТ 1707-51).

При выборе базового масла учитывают область применения смазки. Так, в узлах трения с малыми нагрузками и высокими скоростями целесообразнее применять смазку, в составе которой находится маловязкое минеральное масло.

Наоборот, для узлов трения, несущих большую нагрузку и работающих с низкими скоростями, целесообразно вводить в состав консистентной смазки высоковязкие масла.

В зависимости от входящего в их состав загустителя различают:

1. Мыльные смазки , для получения которых в качестве загустителя применяют соли высших карбоновых кислот (мыла). В зависимости от аниона мыла, смазки одного и того же катиона разделяют на обычные и комплексные (кальциевые, литиевые, бариевые, алюминиевые и натриевые).

В отдельную группу выделяют смазки на смешанных мылах, в которых в качестве загустителя используют смесь мыл (литиево-кальциевые, натриево- кальциевые и др., первым указан катион мыла, доля которого в загустителе большая). Мыльные смазки в зависимости от применяемого для их получения жирового сырья называют условно синтетическими (анион мыла – радикал синтетических жирных кислот) или жировыми (анион мыла – радикал природных жирных кислот). Кальциевые смазки называются солидолами (к солидолам относится также графитная смазка УСА ). Это наиболее распространенные пока у нас в стране смазки благодаря своей дешевизне и удовлетворительным эксплуатационным характеристикам. При нагревании примерно до 80 °С солидолы необратимо распадаются, и это делает невозможным их применение в таких узлах автомобиля, как, например, ступицы передних колес, подшипники водяного насоса, распределитель зажигания.

Комплексные кальциевые смазки по сравнению с солидолами термически стабильны, обладают высокими противозадирными свойствами, но склонны к термоупрочнению и гигроскопичны (хранить их надо в герметичной таре).

К этим смазкам относятся униолы .

Натриевые и натриево-кальциевые смазки (смазка 1-13, жировые консталины ) , обязаны своему распространению довольно высокой температуре плавления. Однако область их применения ограничена, так как они неводостойки – растворяются в воде, хорошо смываются водой с поверхностей и т. д.

По современным меркам перечисленные смазки являются устаревшими, их производство постепенно прекращается. Все большее распространение во всем мире благодаря своим ценным эксплуатационным качествам получают литиевые и комплексные литиевые смазки (литолы, ШРУСы, фиолы, северолы, ЦИАТИМ и др.). Комплексные литиевые смазки, в отличии от литиевых, работоспособны в более широком интервале температур и применяются в оборудовании текстильной, станкостроительной, автомобильной и др. отраслях промышленности.

Бариевые смазки (ШРБ ) несколько уступают литиевым по температурным характеристикам, но превосходят их по водостойкости.

Прогрессивным типом смазок, которые находят применение за рубежом, являются комплексные алюминиевые смазки . Их стоимость не превышает стоимости солидолов, в то же время они имеют высокую механическую и физико-химическую стабильность, высокую адгезию и очень высокую водостойкость. Недостатком является низкая термостойкость (работоспособность при температуре до 70°С). Они применяются в основном в грубых механизмах, работающих в морской воде, а также в резьбовых соединениях.

Неорганические смазки , для получения которых в качестве загустителя используют термостабильные с хорошо развитой удельной поверхностью высокодисперсные неорганические вещества. К ним относят силикагелевые , бентонитовые, графитные, асбестовые и другие смазки.

Органические смазки , для получения которых используют термостабильные, высокодисперсные органические вещества. К ним относят полимерные , пигментные, полимочевинные , сажевые и другие смазки. Новое поколение полиуреатных смазок, приготовленных на нефтяных и синтетических углеводородных маслах, имея верхнюю температуру применения 220°С, по этому показателю вплотную приблизились к высокотемпературным тефлоновым смазкам на основе перфторполиэфиров, выгодно отличаясь от последних значительно меньшей стоимостью.

Углеводородные смазки , для получения которых в качестве загустителей используют высокоплавкие углеводороды. В основном это консервационные и канатные смазки.

По области применения , смазки подразделяются на:

    Антифрикционные (снижение износа и трения сопряженных деталей);

    Смазки узкоспециализированные (отраслевые);

    Консервационные (предотвращение коррозии металлических изделий и механизмов при хранении, транспортировании и эксплуатации). В свою очередь они подразделяются на смазки общего назначения и канатные смазки (предотвращение износа и коррозии стальных канатов);

    Уплотнительные (герметизация зазоров, облегчение сборки и разборки арматуры, сальниковых устройств, резьбовых, разъемных и подвижных соединений, в том числе вакуумных систем).

Самая большая группа смазок по области применения – антифрикционные смазки . Эта группа смазок в свою очередь включает:

- Смазки общего назначения (Солидол С, Солидол Ж, Графитин, Графитная Ж). Солидолы как наиболее дешевые смазки до недавнего времени были наиболее востребованы. В последнее время наметилась тенденция к сокращению выпуска солидолов. Это связано с заменой солидолов на многоцелевые смазки.

- Смазки общего назначения для повышенных температур (наиболее распространенная марка в этой подгруппе смазок – смазка 1-13, Консталин).

- Многоцелевые смазки (наиболее распространенные – Литол-24, Фиол-2).

- Термостойкие смазки (Циатим-221, Циатим-221с, Униол-2М/1, ВНИИНП- 207, ВНИИНП-210, ВНИИНП-214, ВНИИНП-219, ВНИИНП-231, ВНИИНП-233, ВНИИНП-235, ВНИИНП-246, ВНИИНП-247, Графитол, Аэрол, Силикол, Полимол, Маспол, БНЗ-4, БНЗ-5, ПФМС-4С).

- Морозостойкие смазки (Циатим-203, Снарядная ВС, ГОИ-54п, Лита, Зимол).

- Химически стойкие смазки (Циатим-205, ВНИИНП-279, ВНИИНП-280, ВНИИНП-282, ВНИИНП-283, ВНИИНП-294, ВНИИНП-295, ВНИИНП-298, Криогель, №8, Фторуглеродная 10 ОКФ, Фторуглеродная 3 Ф, Фторуглеродная КСТ).

- Приборные смазки (Циатим-201, Циатим-202, ОКБ-127-7, ОКБ-122-7- 5, АЦ-1, АЦ-3, Дельта-I, Дельта-III, СОТ, ВНИИНП-223, ВНИИНП-228, ВНИИНП-257, ВНИИНП-258, ВНИИНП-260, ВНИИНП-270, ВНИИНП-271, ВНИИНП-274, ВНИИНП-286, ВНИИНП-293, ВНИИНП-299, Орион).

- Полужидкие смазки (Циатим-208, Шахтол, Шахтол-К, СТП-Л, СТП-3, ОЗП-1, Трансол-100, Трансол-200, Трансол-300, Трансол-РОМ, Редуктол, Редуктол М, СКП-М, ЛЗ-ПЖЛ-00). - Приработочные пасты (Лимол, ВНИИНП-225, ВНИИНП-232).

К узкоспециализированным смазкам относятся:

    - Смазки для электрических машин (ЛДС-1, ЛДС-3, ВНИИНП-242, ЭШ- 176, СВЭМ).

    - Автомобильные смазки (самые распространенные из них – ШРУС-4, Фиол-2, а также Литин-2, Литол-459/5, АМ карданная, ЛСЦ-15, ШРБ-4, № 58, ЛЗ-31, КСБ, ДТ-1, Дисперсол-1, МЗ-10).

    - Железнодорожные смазки (ЛЗ-ЦНИИ (У), Кулисная ЖК, ЦНИИ-КЗ, ЖТ-72, ЖТ-79Л, ЖА, ЖР, ЖД, Контактная, Буксол, Касетол).

    - Морские смазки (АМС-1, АМС-3, МС-70, МУС-3А, МЗ).

    -Авиационные смазки (Эра, ВНИИНП-254, ВНИИНП-261, ВНИИНП-281, Свинцоль-01, Свинцоль-02, СТ (НК-50), № 9).

    - Индустриальные смазки (Униол-2М/2, ИП-1, ЛКС-2, ЛКС- металлургическая, Прессол-М, КСБ, ЛС-1П, Старт, Сиол, ВНИИНП-273, Ротационная ИР, Термолита и другие).

    - Буровые смазки (Долотол Н, Долотол АУ, Долотол НУ, Геол-1, Пластол).

    - Электроконтактные (ВНИИП-248, ВНИИП-502, Паста 164-39, Электра-1).

консервационных смазок общего назначения является смазка пушечная, среди канатных смазок – Торсиол-35Б.

Наиболее распространенной маркой среди уплотнительных смазок является марка Арматол-238. В группу уплотнительных смазок входят также смазки следующих марок: Р-2, Р-113, Р-402, Р-416, ВНИИП-263, ВНИИП- 291, ВНИИП-292, ВНИИП-300, Вакуумная, Кранол, Резьбол ОМ-2, ЛЗ-162у и др.

Отметим, что обилие наименований отечественных смазок (по различым оценкам несколько тысяч наименований) связано с тем, что в бывшем СССР до 1979г. наименования смазок устанавливали произвольно. В результате одни смазки получили словесное название (Солидол-С), другие – номер (№158), третьи – обозначение создавшего их учреждения (ЦИАТИМ-201, ВНИИНП-242). В 1979 г. был введен ГОСТ 23258-78 (действующий в настоящее время в Украине и в России), согласно которому наименование смазки должно состоять из одного слова и цифры. Сейчас в Украине обязательным требованием к производителям смазок является выпуск продукции в соответствии с Государственными отраслевыми стандартами (ГОСТ), либо в соответствии с Техническими Условиями (ТУ).

За рубежом фирмы-производители вводят наименование смазок произвольно из-за отсутствия единой для всех классификации по эксплуатационным показателям (за исключением классификации по консистенции), что также привело к появлению огромного ассортимента пластичных смазок.

Основными показателями, характеризующими эксплуатационные свойства смазок являются:

консистенция смазки (согласно классификации NLGI – National Lubricating Grease Institute – Национальный институт смазок США, смазки делятся на несколько групп, обозначаемых цифрами от 0 до 6);

    температура каплепадения;

    рабочий диапазон температур;

    механическая стабильность;

    водостойкость, и др.

Совместимость смазки с другими смазками чаще всего определяется типом базового масла и загустителя, входящего в состав смазок.

Состав некоторых смазок, выпускаемых предприятиями и применяемых в различных отраслях промышленности, представлен в таблице 9.1.

Процесс производства пластичных смазок – это сложный физико-химический процесс получения высокостабильных гелей с заданными свойствами. Поэтому технология смазок гораздо сложнее, чем топлив или масел. Даже на предприятиях с большим производственным опытом процент неудачных варок долгое время был очень высок, и это считалось в порядке вещей

Системы смазывания:

  1. Закладная смазка в корпус подшипника.
  2. Периодическое смазывание при помощи шприца.
  3. Смазывание при помощи ручных станций.
  4. Централизованные системы смазывания.

Условия заполнения подшипника пластичной смазкой:

  1. Правильное количество смазки.
  2. Правильный способ закладки.
  3. Правильный сорт и качество смазки.
  4. Правильные интервалы повторного смазывания.

Ограничения при работе смазочных систем:

  1. Как долго смазка сохраняет работоспособность.
  2. Как заменять отработанную смазку.

Расчёт основных параметров систем пластичной смазки

Оптимальные условия подачи смазочного вещества, его количество и периодичность подачи определяют при эксплуатации путём подбора. Для ориентировочного расчёта потребности в смазке на металлургических заводах используют формулу:

q = 11 × К 1 × К 2 × К 3 × К 4 × К 5 см 3 /м 2 ×ч),

где q – количество смазки (см 3), которое следует подавать ежечасно на 1 м 2 трущейся поверхности узла трения; 11 – минимальная норма расхода смазки для подшипников диаметром до 100 мм при частоте вращения, не превышающей 100 об./мин.; К 1 – коэффициент, учитывающий зависимость расхода смазки от диаметра подшипника: К 1 = 1 + 4 × (d – 100) × 10 –3 – подшипники скольжения, К 1 = 1 + (d – 100) × 10 –3 – подшипники качения; К 2 – коэффициент, учитывающий зависимость расхода смазки от частоты вращения подшипника К 2 = 1 + 4 × (n – 100) × 10 –3 ; К 3 – коэффициент, учитывающий качество трущихся поверхностей на норму расхода смазки (при хорошем качестве (суммарная площадь повреждений не превышает 5%) К 3 = 1 , при удовлетворительном К 3 = 1,3 ; К 4 – коэффициент, учитывающий рабочую температуру подшипника (при температуре ниже 75 °С К 4 = 1 , при рабочей температуре 75…150 °С К 4 = 1,2 ); К 5 – коэффициент, учитывающий нагруженность подшипника (при номинальной нагрузке К 5 = 1 , при превышении проектного значения К 5 = 1,1 ).

Производительность дозирующего питателя рассчитывают по формуле:

V n = q × F × Т ,

где V n – требуемый объём смазки, который должен подать питатель за один ход плунжера, см 3 , при заданном режиме смазывания (периоде между двумя последовательными подачами) Т , ч; F – площадь трущейся поверхности подшипника (D × B ), м 2 .

Иногда появляется необходимость увеличения или уменьшения расчётной величины производительности дозирующего питателя. В большинстве случаев такое несовпадение зависит от причин, которые в расчёте учесть невозможно:

  • неудачная конструкция уплотнений;
  • большое количество воды;
  • попадающей на узел трения и вымывающей смазку;
  • неудачное расположение смазочных канавок;
  • сорт смазки, не соответствующий температурным и нагрузочным условиям работы узла.

Эти причины вызывают увеличение, по сравнению с расчётным, типоразмера питателя. Наоборот, меньшая скорость работы машины, более лёгкий режим, хорошо работающее уплотнение ведут к уменьшению запроектированного типоразмера питателя.

Определение количества смазки

Необходимые и достаточные дозы пластичной смазки, расходуемые на первоначальное заполнение корпуса подшипника и на периодическое пополнение, регламентируются данными, приведенными в . Объём смазки должен занимать 40…60% свободного пространства корпуса подшипника. В корпусе подшипника должно быть свободное пространство для выдавливания смазочного материала. Если машина работает без повышенных вибраций, этот объём можно увеличить до 80% при условии применения литиевых смазок. Если машина работает с большими вибрациями, то максимальный объём смазки – 60% свободного пространства подшипника.

Таблица 5.3 – Количество смазки на единовременное заполнение корпуса подшипника и для периодического добавления
Количество смазки, г, необходимое для единовременного заполнения корпуса подшипника качения для
фланцев прижимных крышек с уплотняющим войлочным кольцом разъёмных фланцев корпуса
мелких глубоких
при использовании подшипников серии
200 300 400 200 300 400 200 300 400 200 300 400
175 280 425 263 420 637 315 503 765 685 1090 1660
199 310 486 299 465 730 358 557 875 775 1210 1895
224 362 525 336 543 788 403 650 945 875 1410 2050
279 455 663 418 683 1000 585 955 1395 1170 1910 2790
318 532 817 476 795 1225 667 1120 1720 1370 2230 3430
360 615 987 540 922 1480 755 1290 2070 1470 2580 4150
429 704 1100 645 1055 1650 900 1475 2350 1800 2960 4630
Диаметр внутренний, мм Единовременный расход смазки для периодического добавления при использовании подшипников серии
200 300 400 500 600
90 2,4 4,1 6,1 3,2 6,0
95 2,7 4,5 6,1 3,9 6,7
100 3,1 5,1 7,3 4,1 7,8
110 3,8 6,0 9,1 5,3 9,6
120 4,3 7,2 11,2 6,7 11,2
130 4,6 8,1 13,3 7,4 13,0
140 5,3 9,3 14,8 8,5 15,0

Объём пластичной смазки (см 3) для заправки в подшипниковый узел:

V = f × B × D 0 / 1000 ,

где D 0 – средний диаметр подшипника, см; В – ширина радиального подшипника или высота упорного подшипника, см; f – коэффициент заполнения, зависящий от внутреннего диаметра подшипника d :

d, мм <40 40…100 100…130 130…160 160…200 >200
f 0,5 1,0 1,5 2,0 3,0 4,0

Для подшипников качения с d ВН > 140 мм количество смазки для заполнения корпуса подсчитывают по формуле:

Q з = 0,001 × B × (D 2 – d 2) ,

где Q з – количество смазки, необходимое для заполнения корпуса, г; В – ширина подшипника, мм; D – наружный диаметр подшипника, мм; d – внутренний диаметр подшипника, мм.

Количество смазки для периодического добавления через время h , ч:

Q = 0,005 × D × B г.

Периодичность смазывания

При нормальных условиях эксплуатации полную перезарядку подшипников осуществляют через 4…6 месяцев работы, при тяжёлых условиях эксплуатации – через 2…3 месяца. Повышение температуры на 15 °С требует подачи смазки вдвое чаще.

Время h (ч) между очередными добавлениями порций пластичной смазки при нормальных условиях эксплуатации (при отсутствии утечек, нормальной температуре узла, надлежащем качестве смазки), в зависимости от диаметра d отверстия подшипника и частоты вращения n , может быть ориентировочно определено по графикам ().

Стационарные корпуса и точки смазывания

Если установлен двухрядный подшипник и есть отверстие для смазки, то смазочный материал следует подавать в подшипник по центру. Необходимо предусмотреть отверстие для выхода отработанного смазочного материала.

Централизованные системы пластичной смазки

По принципу работы централизованные автоматические системы смазки делят на два типа: петлевые системы и конечные системы.

Петлевые системы целесообразно применять в тех случаях, когда смазываемые машины расположены близко одна от другой или требуется обслуживать отдельную машину, нуждающуюся в частой подаче смазки, при необходимости на ответвлениях от главной магистрали устанавливать вентили для отключения от смазочной системы механизмов, требующих более редкой подачи смазки, чем основные группы оборудования.

Конечные системы наиболее целесообразно применять при линейном расположении смазываемых агрегатов и механизмов на участках большой длины.

Петлевые системы

  1. Смазочная станция.
  2. Резервуар.
  3. Заправочный насос.
  4. Заправочный клапан.
  5. Электродвигатель и плунжерный насос.
  6. Командный прибор, включающий станцию через заданные интервалы времени.
  7. Самопишущий манометр.
  8. Сигнальная лампа.
  9. Сирена – включается при слишком длительной работе или несвоевременном пуске станции.
  10. Клапан давления, соединённый с конечным выключателем, установлен в конце наиболее длинного ответвления магистрали.
  11. Питатели.
  12. Магистральные трубопроводы.
  13. Трубопроводы, подающие смазки к узлам трения.
  14. Распределитель с электрическим управлением.
  15. Сетчатые фильтры.
  16. Электромагниты распределителя.
  17. Линейные распределители с электрическим управлением – для периодического отключения от системы группы точек, которые не требуют подачи смазки при каждом цикле работы станции.

Системы конечного типа применяют для смазки оборудования, расположенного линейно на участках большой протяжённости, что характерно для металлургического оборудования. В конечных системах более простая разводка труб главной магистрали, так как не требуется вводить обратные линии, необходимые при петлевой системе.

Рисунок 5.6 – Конечная система централизованной смазки

Работа питателей

Работа питателей происходит следующим образом ():

  • положение I – смазка, поступающая под давлением по магистрали А, опускает золотник 2, открывая при этом верхний косой канал 4;
  • положение II – пройдя через канал 4, смазка заставляет опускаться поршень 3, при этом смазочный материал из пространства под поршнем выдавливается по каналу 5 к узлу трения;
  • положение III – смазка поступает по магистрали Б и золотник 2 перемещается вверх;
  • положение IV – пройдя через нижний косой канал, смазка заставляет поршень 3 подняться вверх, при этом смазочный материал из пространства над поршнем выдавливается по каналу 5 к узлу трения.

Рисунок 5.7 – Этапы работы питателей

Штоки-указатели 1 всех питателей должны всегда занимать одинаковое положение: быть либо приподнятыми, либо опущенными вниз до упора. Питатели, не сработавшие в течение трёх последовательных циклов нагнетания, подлежат ремонту или замене. Разработку и замену вышедших из строя питателей при подаче смазки автоматической станцией проводить только после переключения станции на ручное управление.

Эксплуатация централизованных систем густой смазки

  1. Необходимо исключить возможность попадания в систему грязи, песка, воды, воздуха.
  2. Используемая смазка должна быть однотипной, однородной – без комков и посторонних включений.
  3. Запрещается заполнять резервуар ручной станции через верх со снятой крышкой.
  4. Исключить утечки смазки через питатели и трубопроводы.
  5. При замене труб новая труба должна быть протравлена или обработана пескоструйной машиной, промыта и наполнена смазкой.
  6. Запорные приспособления, установленные на маслопроводе возле станций, должны быть открыты при работе.
  7. Необходимо соблюдать сроки заполнения резервуара смазкой, не допускать их опорожнение.
  8. Один раз в сутки менять диаграмму на самопишущем манометре. Результаты предыдущих суток необходимо проанализировать.
  9. Не допускать возможности попадания смазки в механизм самопишущего манометра.
  10. Регулярно проверять показания манометров на контрольных точках.
  11. Один раз в смену проверять работу питателя.

Эксплуатация ручных станций

  1. При нагнетании рукоятка не доводится до крайнего положения, с постоянным контролем давления.
  2. Не оставлять систему под давлением. Рукоятка станции должна быть в вертикальном положении.
  3. Предохранять станцию от загрязнения и от воздействия влаги.
  4. Желательно все питатели, смазываемые точки и отводы пронумеровать однотипно.

Типичные случаи неполадок питателей

  1. Повреждён корпус ограничителя. Заменить, если можно – восстановить.
  2. Погнут шток линейного питателя. Заменить шток либо ограничитель.
  3. Питатель срабатывает только вверх. У золотника очень длинный нижний хвостовик.
  4. При нормальном давлении питатель пропускает смазку свыше положенной нормы. Либо нет золотника, либо золотник изношен.
<

При отсутствии смазки грязь и вода делают своё незаметное дело: появляются следы ржавчины, стираются рабочие поверхности деталей, разрушаются заклинившие элементы. Чтобы велосипед не отказал в дороге, нужно смазывать все его рабочие узлы в гараже. Велосипедные смазки, закрывая металлические поверхности от воздуха, препятствуют образованию ржавчины. Слой смазочного материала, нанесённый на соприкасающиеся поверхности, значительно снижает износ деталей и потери на трение между ними.

Чем смазать конкретную деталь велосипеда?

Недостатка смазок для велосипедов, как и для других машин, нет. Все существующие смазочные материалы можно разделить на несколько типов.

  1. Консистентные. Долговечные, переносят значительные низкие и высокие температуры. Но их трудно наносить, сложно убрать излишки. На них прилипает много пыли и грязи.
  2. Жидкие. Удобно наносить с помощью шприца или маслёнки, можно залить в собранные узлы. Остатки легко вытереть. Минусы: они стекают с покрываемых деталей, меняют вязкость при изменении температуры.
  3. Двухкомпонентные. В виде жидкости можно точно нанести, в состоянии аэрозоля проникают в закрытые места смазываемого узла. Минусы: аэрозольное масло распыляется мимо покрываемой части, после смазывания нужно ждать пока высохнет растворитель.

Консистентные (густые) смазки

Продаются в банках и тюбиках. Данный вид смазок относится к пластичным веществам. Густая смазка для велосипедов применяется в механизмах с медленным вращением. Именно ней надо обрабатывать подшипники во всех узлах велосипеда, резьбовые соединения, втулки рычагов. Густые масла применяются при консервации цепи для длительного её хранения.

Как выбрать определенное густое масло, рассмотрим более детально.

Литиевые масла

Смазки, содержащие литий, обычно имеют желтый или красный цвет. Соединения лития в смазочном масле необходимы для увеличения скольжения и расширения диапазона температур, при которых масло сохраняет рабочие свойства. Литиевые масла работают при температурах от -50°C до +180°C. Примерами смазок с литием могут служить отечественные ЛИТОЛ, ЦИАТИМ, ФИОЛ, ШРУС. Они смываются водой, но долго – в течение года.

Высокую адгезию имеет отечественная смазка №158, она практически не смывается водой. У неё отличительный голубой цвет. Такой цвет придаёт пигмент - фталоцианин меди, который является загустителем и антиокислительной присадкой одновременно. При работе это масло вычищает до блеска чашки, конусы, шарики подшипников. Имеет температурный диапазон от -40°C до +120°C. При отсутствии смазки №158, можно смазать втулки рычагов задней подвески, узел каретки, шарикоподшипники вилки другими густыми маслами.

Импортная смазка Lithium Grease английской фирмы Weldtite Products кроме лития, содержит тефлон.

У литиевых смазок есть общий недостаток – они химически взаимодействуют с алюминием.
Их общее преимущество – более низкая цена, в сравнении с другими типами смазок.

Кальциевые масла

Масла на основе соединения кальция чаще всего имеют желтый или зеленый цвет. Такие смазки отлично сцепляются с металлическими деталями, поэтому они долго смываются водой. Примерами смазок с кальцием являются отечественные Солидол, Униол. Их нужно применять для подшипников колёс, шарикоподшипников педалей, тормозных ручек и других узлов велосипеда, на которые часто попадает вода.

Вот только, ни в коем случае нельзя смазывать солидолом и другими густыми веществами втулку с тормозным механизмом. Если втулочные тормоза, по неопытности велосипедиста, были смазаны густой смазкой, их необходимо промыть керосином и закапать жидким маслом.

Кальциевыми смазками можно покрывать все металлы, для защиты от коррозии, так как химическая активность кальция очень низкая, в сравнении с литием.

Недостатком кальциевых смазок является узкий, по сравнению с литиевыми, диапазон температур при котором они сберегают свои свойства – от -30°C до +50°C.

Графитовые смазки

Графитовая пудра сама по себе является антифрикционным веществом. После того, как связывающее ее масло высохнет, или выгорит, она останется на поверхности смазанной детали. Оставшийся тонкий слой графита обеспечит хорошее скольжение двух соприкасающихся частей, даже тех, которые находятся под большой нагрузкой. Примером графитовой смазки может служить отечественное масло УССА.

Графитовые масла подходят для нанесения на резьбовые соединения и втулки рычагов задней подвески. Было время, когда велолюбители применяли графитку для проварки в ней цепи. Это была трудоемкая и долгая работа, при которой нужно следить, чтобы масло не кипело и, как следствие, не разрушалось. При наличии большого выбора двухкомпонентных смазок, нет необходимости варить цепь в графитовой или другой густой смазке.

Недостаток графитовой смазки в том, что она сильно пачкает всё, с чем соприкасается.

Технический вазелин

В отличие от медицинского и косметического, технический вазелин подвергается наименьшей очистке. Он не прозрачный, а его цвет может варьироваться от жёлтоватого до темно-коричневого. Технический вазелин лучше других смазок закрывает металлические детали от воздуха и воды, поэтому он замечательно защищает их от коррозии. Вазелин отлично смазывает все тросы велосипеда и долго держится на них.

В состав борного вазелина входят свободные кислоты, которые могут разрушать хромированные поверхности подшипников и ног .

Жидкие масла

Реализуются в бочках на разлив или в маленьких канистрах и флаконах-масленках. Жидкая смазка для велосипеда может иметь различную степень вязкости. Примерами смазок с различной текучестью являются индустриальное, веретенное, автомобильное масло. Автомобильным жидким маслом можно смазывать оси вращения тормозных рычагов, тормозные ручки, переключатели скоростей, шарикоподшипники трещоток. Оно годится для втулок велосипеда: вовнутрь них достаточно раз в месяц влить 2-3 капли автомобильного масла для обновления смазки. Но следует избегать чрезмерной заливки, поскольку вытекающее из узлов велосипеда масло образует с пылью липкую грязь. Попавшее на покрышки масло разрушает резину.

Менее вязкое, индустриальное или веретенное масло заливают в вилку велосипеда, как рабочую жидкость масляного амортизатора, или смазывают им ноги вилки.

Жидким маслом можно покрывать тросы, но оно плохо удерживается на открытых поверхностях, поэтому потребуется часто его наносить. Жидкую смазку следует обновлять 1-2 раза за месяц или каждый раз после того, как велосипед побывает под дождём.

Двухкомпонентные смазки

Поставляются в аэрозольных баллончиках и флаконах-масленках. Двухкомпонентная смазка состоит из густого масла и растворителя, который разжижает масло. Такая комбинированная велосмазка имеет текучесть как у воды и легко затекает вовнутрь собранных элементов. После нанесения растворитель испаряется, и внутри остается только густое масло. Поэтому ей удобно смазывать цепь, втулки колесиков натяжения цепи, оси переключателей, опоры тормозных рычагов и другие закрытые узлы велосипеда.

Масляная пленка, которая остается после распыления из баллончика, трудно смывается водой, поэтому двухкомпонентные смазки можно наносить на поверхности велосипеда для защиты его при зимнем катании или долгом хранении.

Силиконовая смазка

Масла на основе силикона можно купить в виде спрея, жидкости или пластичной смазки. Такое разнообразие необходимо для удобства нанесения. Несмотря на различие в исполнении, все они состоят из кислородсодержащего кремнийорганического соединения и растворителя. Силиконовое масло, в отличие от минеральных или эфирных масел, не разрушает резиновые детали.

Также силиконовые смазки отличаются высокой сопротивляемостью к налипанию пыли, поэтому они незаменимы для обработки резиновых уплотнителей.

Тефлоновая смазка

Данный вид смазки имеет самый высокий показатель сопротивления к истиранию. Находясь между двумя подвижными частями, она долго не вырабатывается при большом давлении. Поэтому тефлоновое масло – лучшая смазка для цепи.

В состав тефлоного масла, кроме растворителя, также входят антистатические компоненты отталкивающие пыль.

Восковая смазка

В отличие от смазки на основе тефлона, создает более толстый воскоподобный синтетический слой масла снаружи, который реже потребуется обновлять. По своей способности задерживаться на деталях при увеличенном давлении уступает тефлоновой.

Перед повторным нанесением восковой смазки потребуется очистка поверхности от старого масла.

Проникающие масла

WD-40 и её аналоги

Продаются в аэрозольных баллончиках. Они отлично размягчают ржавчину, разжижают высохшую смазку и вытесняют воду. Аналогами импортного WD-40 являются AnyWay и отечественное средство УНИСМА. На самом деле эти жидкости не являются смазками. В их состав входит уайт-спирит, связующие вещества и лишь немного керосина, в качестве смазки. Их главным действующим компонентом является именно растворитель, а не масло.


Правильно использовать WD-40 и подобные жидкости только для отворачивания заржавевших резьбовых соединений и удаления старой высохшей смазки, а не для смазывания узлов велосипеда.

Смазка Nanoprotech

Смазка Nanoprotech также относится к проникающим смазочным веществам, но в ней применяется минеральное масло в качестве основы. Поэтому с её помощью можно не только очищать детали и откручивать заржавевшие болты и гайки, но и смазывать ненагруженные трущиеся детали. Хотя лучше всего ею пользоваться при разборке велосипеда и его консервации.

Смазочные вещества не должны содержать твердых примесей, свободных кислот и воды, поэтому хранить их нужно в чистой посуде с плотно закрывающейся крышкой.

Теперь базовые знания относительно велосипедных смазок у вас есть. Остается лишь применить их на практике.